FIBONACCI NUMBERS AND BIPYRAMIDS

A. F. Alameddine

King Fahd University of Petroleum and Minerals KFUPM Box 206, Dhahran 31261, Saudi Arabia
(Submitted June 1987)

1. Introduction

A bipyramid B_{n} of order $n \geq 5$ with degree sequence

$$
d_{1} \leq d_{2} \leq \cdots \leq d_{n}, d_{n-1}=d_{n}=n-2
$$

is a maximal planar graph consisting of a cycle of order $n-2$ and two nonadjacent vertices u and v. Every vertex of the cycle has degree 4 and is adjacent to both u and v whose degrees are $n-2$ as in Figure 1 .

FIGURE 1. A bipyramid with $n=8$

If B_{n} is redrawn as in Figure $1(b)$, then it is geometrically obvious that all such maximal planar graphs contain wheels as subgraphs with $n-2$ vertices on the rim and a center u with degree $n-2$ [3]. The graph B_{n} is called a generalized bipyramid if the restriction on d_{n-1} is relaxed while preserving maximal planarity with $3 \leq d_{n-1} \leq n-2$. Some maximal planar graphs B_{8} are shown in Figure 2.

FIGURE 2. Some bipyramids B_{n} of order 8

The Fibonacci number $f(G)$ of a simple graph G is the number of all complete subgraphs of the complement graph of G. In this paper, our main goal is to present a structural characterization of the class of generalized bipyramids whose Fibonacci numbers are minimum. We will prove that, if G is a maximal planar graph of order n belonging to this class, then

$$
f(G) \sim(0.805838 \ldots)(1.465571 \ldots)^{n}
$$

This result will be achieved via outerplanar graphs.
Prodinger and Tichy [2] gave upper and lower bounds for trees: If T is a tree on n vertices, then

$$
F_{n+1} \leq f(T) \leq 2^{n-1}+1
$$

where F_{n} is the $n^{\text {th }}$ Fibonacci number of the sequence

$$
F_{n}=F_{n-1}+F_{n-2}, F_{0}=F_{1}=1
$$

The upper and lower bounds are assumed by the stars S_{n} and paths P_{n} in Figure 3 , where

$$
f\left(S_{n}\right)=2^{n-1}+1 \quad \text { and } \quad f\left(P_{n}\right)=F_{n+1}
$$

The upper bound of the set of all maximal outerplanar graphs was investigated in [1]. It is shown that if G is a maximal outerplanar graph of order n and N_{n} is the fan shown in Figure 3, then

$$
f(G) \leq f\left(N_{n}\right)=F_{n}+1
$$

Figure 3. Stars, Paths, and Fans

2. From Maximal Planar to Maximal Outerplanar

From the definition of the Fibonacci number of a graph, we observe that the number of complete subgraphs in the complement of B_{n} is the same as the number of those complete subgraphs that do not contain the center u and the number of those that do contain u. That is,

$$
f\left(B_{n}\right)=f\left(B_{n}-u\right)+2
$$

The graphs $B_{n}-u$ for $n=8$ are redrawn in Figure 4.
Let $C_{n-1}=B_{n}-u$ and consider the vertex v in C_{n}. We have

$$
f\left(C_{n-1}\right)=f\left(H_{n-2}\right)+f\left(H_{n-2}^{\prime}\right)
$$

where $f\left(H_{n-2}\right)$ is the number of complete subgraphs in the complement of $C_{n-1}-v$ and $f\left(H_{n-2}^{\prime}\right)$ is the number of those complete subgraphs of the complement of C_{n-1} that contain v. We remark that if an edge e is added to two nonadjacent vertices of any graph G without destroying maximal planarity, then

$$
f(G)>f(G+e)
$$

e is called a chord if it is not a rim edge. It suffices to show that the graph

FIGURE 4. Fibonacci numbers of $B_{n}-u, n=8$
C_{n-1} has minimum f if the remaining chords form longest paths in H_{n-2} and H_{n-2}^{\prime} as in graph (9) in Figures 4 and 5. That is, $f\left(C_{n-1}\right)$ is minimum if both H_{n-2} and H_{n-2}^{\prime} are maximal outerplanar graphs with longest paths of chords.

FIGURE 5. $f\left(C_{n-1}\right)=f\left(H_{n-2}\right)+f\left(H_{n-2}^{\prime}\right)$
Since a maximal outerplanar graph G is a triangulation of a polygon and every such graph has two vertices of degree two, there are two triangles T_{1} and T_{2} in G each of which has a vertex of degree 2 . If the vertex v is chosen in one of these triangles, then we have the following theorem.

Theorem 1: Let H_{n} be a maximal outerplanar graph of order n with a longest path of chords. Let $C_{n+1}=H_{n}+v$, where v is inserted in any triangle of H_{n} and joined to the corresponding vertices, then $f\left(C_{n+1}\right)$ is minimum if $v \in T_{1}$ or $v \in T_{2}$.

Proof: Consider the formula

$$
f\left(C_{n+1}\right)=f\left(H_{n}\right)+f\left(H_{n}^{\prime}\right)
$$

$f\left(H_{n}\right)$ is invariant under all possible choices of triangles, whereas H_{n}^{\prime} has the same Fibonacci number if and only if $v \in T_{1}$ or $v \in T_{2}$. For all other choices of triangles, H_{n}^{\prime} is a disjoint subgraph and hence has a larger Fibonacci nümber.

In the next theorem, we show that among all maximal outerplanar graphs of the same order $f\left(H_{n}\right)$ is smallest.

Theorem 2: Let G be an arbitrary maximal outerplanar graph of order n. Then $f\left(H_{n}\right) \leq f(G)$, where H_{n} is maximal outerplanar with longest path of chords.

Proof: Let G and H_{n} have the same order n and proceed by induction on n. Assume that $f\left(H_{k}\right) \leq f(G)$ for all maximal outerplanar graphs G of order $k<n$.

Using the same labeling of the hamiltonian circuit of G we draw the graph H_{n}. This means that G and H_{n} differ only in the arrangements of the chords. Let u and v be vertices of degree 2 in G and H_{n}, respectively. Define $G^{*}=G-$ u and $H^{*}=H_{n}-v$. That is, G^{*} and H^{*} are the maximal outerplanar graphs of order $n-1$ obtained by deleting u and v from G and H_{n}, respectively. Also, let $G^{* *}$ and $H^{* *}$ be the graphs obtained by deleting the two neighbors of u from G and the two neighbors of v from H_{n}. [Let $v=2 k$ in Figure $6(a)$ and $v=k$ in Figure 6(b).] We observe that the number of complete subgraphs in the complement of G is the sum of the number of those complete subgraphs which do not contain the vertex u and the number of those which do contain u. After noting that

$$
f\left(G^{* *}\right)=f\left(G^{* *}-u\right),
$$

we have

$$
\begin{equation*}
f(G)=f\left(G^{*}\right)+f\left(G^{* *}\right) \text { and } \quad f\left(H_{n}\right)=f\left(H^{*}\right)+f\left(H^{* *}\right) . \tag{1}
\end{equation*}
$$

(a)

FIGURE 6. The graphs $H_{2 k}$ and $H_{2 k-1}$ with longest path of chords

Since G^{*} and H^{*} are maximal outerplanar of order $n-1$, then, by the induction assumption,

$$
\begin{equation*}
f\left(H^{*}\right) \leq f\left(G^{*}\right) \tag{2}
\end{equation*}
$$

As for $H^{* *}$ and $G^{* *}$, we see that the former is maximal outerplanar after deleting v (see Figure 6) while the latter need not be. However, by arbitrarily adding edges to $G^{* *}-u$, we see that at each stage the Fibonacci number is less than that at the previous stage until we construct a maximal outerplanar graph $G^{* * *}$ with $2(n-3)-3$ edges having $G^{* *}-u$ as a subgraph (see Figure 7).

FIGURE 7. The construction of $G^{* * *}, n=8$
Now, since $f\left(G^{* *}\right)=f\left(G^{* *}-u\right)$, we have

$$
f\left(G^{* * *}\right)=f\left(G^{* * *}-u\right),
$$

and since $H^{* *}-u$ and $G^{* * *}$ satisfy the hypotheses of the theorem and their order is less than n, we have

$$
\begin{equation*}
f\left(H^{* *}\right) \leq f\left(G^{* * *}\right) \leq f\left(G^{* *}\right) \tag{3}
\end{equation*}
$$

From (1), (2), and (3), we see that $f\left(H_{n}\right) \leq f(G)$ and the proof is complete. \square
Now we show that these graphs H_{n} are the only ones with the relevant property.

Theorem 3: If G is a maximal outerplanar graph of order n with $f(G)=f\left(H_{n}\right)$, then G is isomorphic to H_{n}.

Proof: We argue by induction, assuming the result for small values. The argument for Theorem 2 shows that $f\left(G^{*}\right)=f\left(H_{n-1}\right)$ and $f\left(G^{* *}\right)=f\left(H_{n-3}\right)$, where $f(G)=f\left(G^{*}\right)+f\left(G^{* *}\right)$. Hence, by the induction hypothesis, $G^{*} \simeq H_{n-1}$ and $G^{* *}$ is maximal outerplanar (by observing that an additional edge decreases the Fibonacci number) and is isomorphic to H_{n-3}. These conditions easily force the conclusion.

3. The Fibonacci Number of H_{n}

The graphs H_{n} shown in Figure 6 satisfy the recurrence relation

$$
\begin{equation*}
h_{n}=h_{n-1}+h_{n-3} \tag{4}
\end{equation*}
$$

where $f\left(H_{n}\right)=h_{n}, h_{0}=1, h_{1}=2, h_{2}=3$.
The solution of (4) is

$$
\begin{aligned}
h_{n}=\left[\frac{u+v+10}{3 u+3 v}\right] & {\left[\frac{u+v+1}{3}\right]^{n}+\left[\frac{u+v-5}{3 u+3 v}\right]\left[-\frac{u+v-2}{6}+\frac{u-v}{6} \sqrt{3} i\right]^{n} } \\
& +\left[\frac{u+v-5}{3 u+3 v}\right]\left[-\frac{u+v-2}{6}-\frac{u-v}{6} \sqrt{3} i\right]^{n}
\end{aligned}
$$

where $u=\sqrt[3]{\frac{29+3 \sqrt{93}}{2}}$ and $v=\sqrt[3]{\frac{29-3 \sqrt{93}}{2}}$.
Since $f\left(C_{n-1}\right)=f\left(H_{n-2}\right)+f\left(H_{n-2}^{\prime}\right)$, we have

$$
f\left(C_{n-1}\right)=f\left(H_{n-2}\right)+f\left(H_{n-5}\right) \quad \text { and } \quad f\left(B_{n}\right)=f\left(H_{n-2}\right)+f\left(H_{n-5}\right)+2
$$

from which we can prove the following result.
Theorem 4: If B_{n} is the generalized bipyramid with minimum Fibonacci number, then

$$
f\left(B_{n}\right) \sim c \alpha^{n}, \text { where } c \approx 0.805838 \ldots \text { and } \alpha \approx 1.465571 \ldots
$$

Proof: The order of growth of $f\left(H_{n}\right)$ is governed by the dominant root

$$
\alpha=\frac{u+v+1}{3}
$$

and $f\left(H_{n}\right) \sim c_{1} \alpha^{n}$, where $c_{1} \approx 1.3134 \ldots$.
For the bipyramids B_{n} with minimum Fibonacci number, we have

$$
f\left(B_{n}\right)=f\left(H_{n-2}\right)+f\left(H_{n-5}\right)+2
$$

which implies

$$
f\left(B_{n}\right) \sim c_{1}\left[\alpha^{n-2}+\alpha^{n-5}\right] \text { or } f\left(B_{n}\right) \sim c_{1}\left(\alpha^{-2}+\alpha^{-5}\right) \alpha^{n}
$$

So, we can write

$$
f\left(B_{n}\right) \sim(0.805838 \ldots) \alpha^{n}, \text { where } \alpha=1.465571 \ldots
$$

We summarize our results for small graphs and compare with $F_{n}, n \leq 20$, in Table 1.

TABLE 1
Fibonacci numbers of various graphs of order ≤ 20

n	F_{n}	$f\left(N_{n}\right)$	$f\left(H_{n}\right)$	$f\left(B_{n}\right)$
0	1	1	1	
1	1	2	2	
2	2	3	3	
3	3	4	4	
4	5	6	6	
5	8	9	9	7
6	13	14	13	10
7	21	22	19	14
8	34	35	28	19
9	55	56	41	27
10	89	90	60	39
11	144	145	88	56
12	233	234	129	81
13	377	378	189	118
14	610	611	277	172
15	987	988	406	251
16	1597	1598	595	367
17	2584	2585	872	537
18	4181	4182	1278	786
19	6765	6766	1873	1151
20	10946	10947	2745	1686

Acknowledgment

The author wishes to acknowledge the support of King Fahd University of Petroleum \& Minerals.

References

1. A. F. Alameddine. "An Upper Bound for the Fibonacci Number of a Maximal Outerplanar Graph." The Arabian Journal for Science and Engineering 8 (1983):129-131.
2. H. Prodinger \& R. F. Tichy. "Fibonacci Numbers of Graphs." Fibonacci Quarterly 20.1 (1982):16-21.
3. Z. Skupien. "Locally Hamiltonian and Planar Graphs." Fund. Math. 58 (1966):193-200.
