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In [3, p. 52], Richard Guy gives the following problem of Schinzel: If p is 
an odd prime and n = 2 or p or 2p, then (cj)(n) + 1) \n, where <J> is Euler's 
totient function. Is this true for any other n? 

We shall show that this question is closely related to a much older problem 
due to Lehmer [4]: whether or not there exist composite n such that 
(J) (n) | (n - 1). It will turn out that if there are no such composite n, then 
Schinzel!s are the only solutions of his problem; if there are other solutions 
of Schinzel?s problem, then they have at least 15 distinct prime factors. Let 
oo(n) denote the number of distinct prime factors of n. More specifically, we 
shall prove the following. 

Theorem: Let n be a natural number and suppose (<J)(n) + l)|n. Then one of the 
following is true. 

(i) n = 2 or p or 2p, where p is an odd prime. 
(ii) n = mt, where m = 3, 4, or 6, gcd(/?7, t) = 1, and t - 1 = 2$(t) [so that 

co(t) > 14]. 
(iii) n = mt, where gcd(m5 t) = 1, <$>(m) = j > 4, and t - 1 = j<$>(t) [so that 

oo(t) > 140] . 

Proof: Since ($(ri) + 1)\n9 we have 

m(($)(n) + 1) = n (1) 

for some natural number 777. Let t = cj>(ft) + 1 and ^ = gcd(/?7, t) . Then, using 
(1) and an easy and well-known result (Apostol [1, p. 28]), 

(|>(n) = <\>(mt) = \ / ^ \ (2) 

Since d\m> we have §(d) \$(m) s o that $(m)/$(d) is an integer. Then, from (2), 
d\$(n); but, by definition, d\($(n) + 1). Hence d = 1. Thus, we have n = mt, 
where 

t = <()(n) + 1 = M/??t) + 1 = <j>(m)<K£) + 1. 
We cannot have t = 1. Also, £ is prime if and only if §(m) = 1. In this 

case, m = 1 or 2, and we have Schinzel?s solutions, in (i). 
Suppose now that t is composite. If (j) (777) = 2, then 77? = 3, 4, or 6 and 

£..- 1 = 2 <(>(£). Cohen and Hagis [2] showed in this case that oo(t) > 14. These 
are the solutions in. (ii) . It is impossible to have $ (m) = 3, so the only 
remaining possibility is that (j) (777) > 4, so t - 1 = J(f>(£), saY> with J > 4. For 
this equation to hold, Lehmer [4] pointed out that t must be odd and 
squarefree, and Lieuwens [5] showed that co(t) > 212 if 3\t. (This latter re-
mark applies also to the solution n = kt in (ii) . ] Suppose 2> \ t, and write 
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t = n p i 5 5 < pT < p 2 < . . . < p u , 

i = 1 

where p1 , p^, •••> P a r e primes. Then p2 > 7, p3 > 11, ... . If u < 139, 

/ . • * - 1 * £ Pj 5 7 11 811 . 
A < 7 = < = [I fe < — — . . . < A 
" *(*) *(*) i-i p. - 1 ~ 4 6 10 810 

(There are 139 primes from 5 to 811, inclusive.) This contradiction shows that 
u = u)(£) ̂  140 in this case, giving (iii) and completing the proof. 

Using the above and results of Pomerance [6, esp. the Remark] and [7], it 
is not difficult to show that the number of natural numbers n such that n < x, 
(<$>(n) + 1) \n and n is not a prime or twice a prime, is 

0(xl/2 (log x ) 3 4 (log log x)_5/6) . 
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