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Introduction 

Miles [5] defined the p-generalized Fibonacci numbers (p > 2) as follows: 
ur,n = °  (n = ~l> " 2> ~3> •••)» (la) 
UTi 0 = 1, (lb) 

v 
uv,n = X ur, n - i (n = 1, 2 , 3 , . . . ) . (lc) 

i = l 

In such a way, for r = 2, we get the ordinary Fibonacci numbers. The object of 
this paper is to present, in the first section, an elementary proof of the 
convergence of the sequences of ratios 

lr, n - 1 

using neither the theory of difference equations nor the theory of continued 
fractions. In the second section, we consider a geometric interpretation of 
the p-generalized Fibonacci numbers that is a natural generalization of the 
golden rectangle. Finally, in the third section, we consider electrical 
schemes generating these numbers. 

1. Convergence Results 

For each r > 2, we consider the sequence of ratios 

Rather than using the theory of difference equations to obtain a formula for 
uT} n and use it to prove the convergence of the sequence to the unique positive 
root of the polynomial 

pr(x) = xr - I > ^ (see [5]), 
i = 1 
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we present here a proof based on a fixed point argument using the way the ur n 
are generated. 

Observe that ur>n > 0 for n > 0. Hence, dividing (lc) by ur n_i» we get 

£ = 2 ^r, n - 1 
1) 

and, using the definition of tVy i , we obtain 

r ^ 
tr,n = 1 + E 7—1 (n > P). (2) 

11 ^p, n -j 
J = l 

From (1), we also have 

^p n = ^ ^ p yi — i — ^p ?2 — p — l tor ?z ̂  zj 

hence, dividing by wr>n_ ls we obtain 

£r, „ = 2 - — (n > p + 1). (3) 
11 ̂ p, n-i 

i = l 
Now, since tTi n > 1 for n = 1, ..., p, using (2) we have tPj n > 1 for all n > 1 
and, using (3), we also have tr> n < 2 for all n > 1. 

Using (2) and (3) we can generate a sequence of upper bounds {Bri £}j? = n and 
a sequence of lower bounds {br, ^I=Q f° r £p, n a s follows. We have 

1 = bTy 0 < tVi n < BTi o = 2 (n > 1) 

and, assuming that Z?Pj £_-[ and BPj £_x are known and such that 

£p, £-1 ^ ^p, w ^ 5 P , £-1 f o r all « ^ ̂ U " 1) + 1, 

we generate bTj l and BTj £ using (2) and (3) in such a way that 

br, £ = l + E — T T ~ < tpj n < 2 - — = 5r> £ (4) 
^ = 2 ^P, £ ~1 ^P, £-1 

for all n > P£ + 1. 
The problem is now related to the convergence of the sequences 

^ps£>r=0 a n d {B*>, £^=0' 
We consider the two functions 

f, <*) - 1 + £ -Jrr and Fr (x) - 2 - -j? 
i = 2 ^ ^ 

From (4), 5r, A = Fr(SPj£_1) and bVy £ = /r(^r, £-i)» hence, the result we look 
for will be obtained from the study of the two functions fr(') and Fr (•) . 

Lemma 1: Let p > 2 and FT (x) = 2 -. 

(a) The equation x = FP(x) has two solutions in the interval (0, °°) . One 
solution is 1 and the other, noted ar9 is in the interval (1, 2). 

(b) Let {ooi}T=Q be a sequence defined by x^ + 1 = Fr (xi) for i = 0, 1, 2, ... . 

(i) If x0 € (1, a P), the sequence { ^ I ^ Q is strictly increasing and con-
verges to ar . 
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( i i ) If XQ E (ar, oo)s the sequence {x^}?3 i s s t r i c t l y decreasing and con-
verges to a- . 

Proof: If x € (0, oo), then 

F ' (x) r + 1 X" 

„, N P(P + 1) 
> 0 and F"(x) = r+2 < 0; 

hence, Fv ( • ) i s a s t r i c t l y increasing continuous concave function on (0, °°) . 
Also 

lim Fr (x) = -°°, lim Fr (x) = 2, 
x -> 0 + a;>+oo 

F r ( l ) = 1 and Fr (1) = r > 1, then Fr (x) < x on (0, 1) and there ex i s t s a r ea l 
number aP such that FT (x) > x on ( 1 , ar) and Fr(x) < x on (aP , °° ) (see Figure 
1). The r e s u l t s follow from these observations. D 

FIGURE 1. Graph of y = F r ( x ) 

Lemma 2: Let r > 2 and l e t 

1 
fr. (*) = 1 + E 

i = 2 X i-1 

The equation x = fr(x) has a unique solution $r in t n e interval (0, °°). Also 
3r is the unique positive root of the polynomial 

p (x) = xr - E xz 

i = i 

Proof: If x e (0, °°), we have 

/P'(*) = " E 
^ = 2 XL 

< 0 and f"(x) = E i ( i - 1) 
-£ = 2 ^ i + 1 > 0; 

therefore, /* (•) is a strictly decreasing continuous convex function on (0, °°). 
Also 

lim fr(x) = +oo and lim fr(x) = 1 (see Figure 2). 
a; -> 0 + # •> +oo 

It follows that there exists a unique positive x such that x = fr(x). Also, 
for x > 0, x = fr(x) is equivalent to 
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- E 
i = l 

and the result follows. Q 

FIGURE 2. Graph of y = fr(x) 

Lemma 3: Let r > 2. For x * 1, x = fr(x) is equivalent to x = Fr(x), and it 
follows that 

6 r - ar € (2(1 - p ) , 2). 

Proof: x = Fr (x) is equivalent to x^O - 1) = rcp - 1. For # * 1, x = Fr (x) is 
equivalent to 

r-i 

i = 0 

which is also equivalent to x = fr(x). Hence, 

«P = /r(ar) ̂  /r(2) = 2̂ 1 - 4r)- • 

From Lemmas 1-3 we can conclude that i) the sequence {Br> z} is strictly 
decreasing and converges to ar, ii) the sequence {bP} jt^-g is strictly increas-
ing and converges to ar. Then, using (4), we have the following result. 

Theorem 1: Let r > 2, uTi n given by (1), and 

tY u 
for n > 

r, n - 1 

The sequence {trtn}™=1 converges to the unique positive root ar of the polyno-
mial 

P (x) = xv - f; x p - \ . D 

We could call ar the v -generalized golden number; hence, we have the fol-
lowing result. 

Theorem 2: The sequence of 2^-generalized golden numbers {ar}™ is a strictly 
increasing sequence converging to 2. 
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Proof: Let 2 < r, < P2. We have Fr (as) < Fr (x) for all x e (1, °°); Hence, 

ari = Fr (aPi) < FP2 (aPl) . 

It follows that ar e (1, ap2) . Then the sequence {ar}~=2 is strictly increas-
ing and upper bounded by 2. It converges and we have 

lim ar = lim(2 - — 1 = 2 . D 
p -> 00 p-^oo\ Ot^ / 

Remark 1: Somer [8] considered the proof of Theorem 2 based on continued frac-
tions. 

Remark 2: We have shown that ar is the unique positive root of the polynomial 

pr (x) = xr - X ^ 
= 1 

We can also easily observe that p (x) has 

(i) only one negative real root if r is even, 
(ii) no negative real root if v is odd, 

because p (x) = 0 is equivalent to 

xr = for x < 0 
x - 1 

(see Miles [5] for a complete study of the polynomial p (x) ) . 

Remark 3: We could consider that uVi i are given positive real numbers for i = 
0, ..., v - 1 and that uTy n are generated using (lc) for n > r. In this way, 
we could show that tVy n > 1 for n > r and tP } n < 2 for n > 2r. More generally, 
it follows that we could start with any given real numbers uTi i (£ = 0, ..., 
v - 1) and use the method described here to show 

which is the positive root of p (x), as soon as r successive values uVi ^ of the 
same sign appear. 

2. A Geometric Interpretation 

Let us consider the sequence of r-tuples {vVy n}n=o generated by induction. 
Let VTy 0 = (ur> 0, ur> ls . .., Wr, r-l)- Assuming that iTi j is already generated 
for j = 0, ..., n - 1, we generate fPjn as follows: 

(i) determine the unique integers i and k such that n = i + kr, 0 < i < r 
and fc > 0 [in other words, i = 1 + (n - 1) mod r], 

(ii) the coordinates of 5P,n are those of Vr, n-i except for the ith coor-
dinate of vTs n which is the sum of the v coordinates of ^ ^ . p 

From this construction, we can show that the coordinates of vr, n a r e suc-
cessively urin, uF)n + l, . .., ursn+r-i where uPi n + r-i±s the ith coordinate, 
and the sum of the coordinates of vr> n is urtTl+r. 

To each vr> n we can associate the parallelepiped rectangle in E.r having 
this point as the vertex that is not on the axis. This construction for v > 2 
is a natural generalization of what happens in the case v = 2. Figures 3 and 4 
illustrate the cases v = 2 and r = 3, respectively. 
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"2,0 

"2,1 

"2,2 

"2,3 

"2,4 

"2.5 

= ( 1 , 1) 
= ( 2 , 1) 
= ( 2 , 3) 
= (5 , 3) 
= (5 , 8) 
= (13 , 8) 

1 I 5 13 

FIGURE 3. Case r = 2 

^3,0 

^3,1 

^3,2 

^3,3 

^3,4 

^3,5 

= ( 1 , 1, 2) 
= ( 4 , 1, 2) 
= (4 , 7, 2) 
= (4 , 7, 13) 
= (24, 7, 13) 
= (24, 44, 13) 

FIGURE 4. Case r 

Normalizing the vectors VTt n with respect to the uniform norm 
serve that 

lim = ar, 
k+c 

(i = 1, ..., r) 
\vr, i+ kr\\ 

we ob-

where dTs 1 is a unit vector, with respect to the uniform norm, having the coor-
dinates l/aj"i, l/a£~2, ..., l/a£, l/ar, 1, and_ such that 1 is the i t h coor-
dinate. Figures 5 and 6 illustrate the vectors dTt 1 (i = 1, . .., r) for r = 2 
and v = 3, respectively. 

a2 = 1.618034... 

ci2 l = (1, l/a2) 

ci 2,2 d/a?, 1) 

FIGURE 5. Case r = 2 
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a 3 = 1 .8392868 . . . 
d 3 j l = ( 1 , l / a | , l / a 3 ) 

d3 3 = ( l / a | , l / a 3 , 1) 

FIGURE 6. Case r = 3 

Moreover, the volume V of the parallelepiped generated by the vectors dVy i, 
" i s d-p 2' • • • 5 <3, 

1 \r-l 
Fr = det (dr> x, . . . , dr> r ) = ( 1 - -^ j 

Since lim av = 2, it follows that lim Fr = 1. 
V -> +oo 2» -> oo 

We can present an informal interpretation of the last result. If we consi-
der coordinatewise convergence, we can define for the sequence {dr, i}r=i t n e 

limit 

d . = lim cL (2 1-i nl-i .., 2"2, 2"1, 1, 0, 0, ...) 

which is a vector in the infinite-dimensional euclidean space E.00 (or the set of 
infinite sequences). Hence, the semi-infinite determinant 

7^ = det(d00t 1? d 2> • • •) = l i m vr 
r+ oo 

is triangular and has l?s along the diagonal, so FM = 1. 

3 . E lec t r ica l Schemes 

It is well known that we can generate the sequence 

"2,n +ir 
U2,n ) n = 0 

using electrical circuits (see [1], [2], [3], [4], [6], [7]). Recently, Beran 
[2] wondered if it was also possible for the sequence 

(U3,n+ir 
( U3,n Jn-0* 

We present here one method to generate the sequence 

using electrical circuits. 
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Let us define the resistances 

r _ ur, j + i 

for j > 0 and i, > -j. Hence defined, connecting in series r successive resis-
tances 

Vj.i + k (k = 0. .... r - 1) 
we obtain the resistance next to the last one 0,^ • + because 

r-1 

Also, connecting in parallel r successive resistances 

n;+k)f (k - 0, ..., r - 1) 
we obtain again the resistance next to the last one ^7-+p J because 

^r . = 1 
"J + P, i r - 1 

Using these observations, we can generate a sequence of sets {5j} «, where 
S% is the set of resistances having values Q^f % for t- = -r, -v + 1, . .., -1, 0, 
1, ..., r - 1, T, The process is by induction. 

For n = 0, we have: 

(i) Q^ i = 0 for i = ™r, . . . , - 1 ; 

( i i ) fij>0 = 1; 

( i n ) n£ ^ = Y. ^o, i - j f o r ^ = l > • - •' p-
J = i 

Assuming that the resistances in the sets SQS Sl9 S2> . ••» Sn-\ a r e avail~ 
able, we can generate the resistances in the set S* as follows: 

v 1 
(i) for ̂  = -r, ..., -1, we have ttn ^ 

2^ 1 /tin - j , j + i 
J = l 

and ^ . j , j + i e C / , f o r J = 1> . . . , r 

(in these expressions we do not consider a term for which the index j is such 
that n - j < 0) . Then the resistance fi^ ̂ can be constructed if we use the 
already constructed resistances and connect them in parallel. 

(ID $£0 = i. 
V 

(iii) for i = 1, . . ., r, we have fij^ i = 2 ®-n,i-j> 
J = 1 

where fi^ ̂ _ • 6 5JJ for j = 1, . .., p. 

These resistances are already known and can be connected in series to obtain 
the desired resistance. 

If we consider the rational resistances hence built, in each set Sn their 
smallest common denominator is ur> n if we start with ur Q, ..., ur, r-\ having 
no common factor, i.e., (ur 0, ur 15 ..., ur r_{) = 1. Then, if we write these 
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rational numbers using their common denominator ur n, the numerators form the 
sequence {ur> n + i}^=_r-
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NOTE ON A FAMILY OF FIBONACCI-LIKE SEQUENCES 

J o h n C. T u r n e r 
University of Waikato, Hamilton, New Zealand 

(Submitted May 1987) 

In [2] P. Asveld gave a s o l u t i o n to the r e c u r r e n c e r e l a t i o n 

Gn = Gn-l + Gn-2 + E ^ w i t h GQ = Gl = 1 . ( 1 ) 
3=0 

In [2] we showed that the solution to the recurrence relation 

Gn = Gn_l + Gn_2 + Sn, Gl = Sl9 G2 = Sl + S2, (2) 

where Sn is the nth term of any sequence {Sn} = S, is given by the nth term of 
the convolution of the Fibonacci sequence F with the sequence S. That is, the 
solution of (2) can be expressed as 

Gn = (F * S)n , 

using * to mean convolution. 
This note shows how Asveld *s family can be dealt with by the convolution 

technique, using generating functions. Although we do not work through the de-
tails in the note, it is clear that a comparison of the two final solutions 
would yield interesting identities relating Asveld\s tabulated polynomials and 
coefficients, and the coefficients from our solution. 

1989] 229 


