$$
t=\prod_{i=1}^{u} p_{i}, \quad 5 \leq p_{1}<p_{2}<\cdots<p_{u}
$$

where $p_{1}, p_{2}, \ldots, p_{u}$ are primes. Then $p_{2} \geq 7, p_{3} \geq 11, \ldots$ If $u \leq 139$,

$$
4 \leq j=\frac{t-1}{\phi(t)}<\frac{t}{\phi(t)}=\prod_{i=1}^{u} \frac{p_{i}}{p_{i}-1} \leq \frac{5}{4} \frac{7}{6} \frac{11}{10} \cdots \frac{811}{810}<4
$$

(There are 139 primes from 5 to 811 , inclusive.) This contradiction shows that $u=\omega(t) \geq 140$ in this case, giving (iii) and completing the proof.

Using the above and results of Pomerance [6, esp. the Remark] and [7], it is not difficult to show that the number of natural numbers n such that $n \leq x$, $(\phi(n)+1) \mid n$ and n is not a prime or twice a prime, is

$$
O\left(x^{1 / 2}(\log x)^{34}(\log \log x)^{-5 / 6}\right)
$$

References

1. T. A. Apostol. Introduction to Analytic Number Theory. New York: SpringerVerlag, 1980.
2. G. L. Cohen \& P. Hagis, Jr. "On the Number of Prime Factors of n if $\phi(n) \mid(n-1) . "$ Nieuw Archief voor Wiskunde (3) 28 (1980):177-185.
3. R. K. Guy. Unsolved Problems in Number Theory. New York: Springer-Verlag, 1981.
4. D. H. Lehmer. "On Euler's Totient Function." BulZ. Amer. Math. Soc. 38 (1932):745-751.
5. E. Lieuwens. "Do There Exist Composite Numbers M for Which $k \phi(M)=M-1$ Holds?" Nieuw Archief voor Wiskunde (3) 18 (1970):165-169.
6. C. Pomerance. "On Composite n for which $\phi(n) \mid n-1$, II." Pacific J. Math. 69 (1977):177-186.
7. C. Pomerance. "Popular Values of Euler's Function." Mathematika 27 (1980): 84-89.

(Continued from page 282)
4. H. T. Freitag P. Filipponi. "On the Representation of Integral Sequences $\left\{F_{n} / d\right\}$ and $\left\{L_{n} / \partial\right\}$ as Sums of Fibonacci Numbers and as Sums of Lucas Numbers." Presented at the Second International Conference on Fibonacci Numbers and Their Applications, August 13-16, San Jose, California, U.S.A.
5. P. Filipponi. "A Note on the Representation of Integers as a Sum of Distinct Fibonacci Numbers." Fibonacci Quarterly 24.4 (1986):336-343.
6. P. Filipponi \& O. Brugia. "On the F-Representation of Integral Sequences Involving Ratios between Fibonacci and Lucas Numbers." Int. Rept. 3B1586, Fondazione Ugo Bordoni, Roma, 1986.
7. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin Co., 1969.

