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1. Introduction 

The Stirling number of the second kind, S(n, k) , is defined as the number 
of ways to partition a set of n elements into k nonempty subsets. Obviously, 
S(ji9 k) = 0 if n < k. The sequence {S(n5 k) (mod pN)}n>]< is known to be peri-
odic. That is, there exists NQ > k and TT > 1 such that 

S(n + TT, k) = S(n, k) (mod p#), for n > N0. 

Note that any period is divisible by the minimum period. Carlitz [2] showed 
that if k > p > 2 and ph~l < k < pb, where b > 2, (p - l)pN+b~ 2Is a period for 
{S(n, k) (mod pU)}n>k. 

In this paper, we will determine the minimum period of {S(n, k) (mod A01n>fc 
for k > 1 and M > 1. This extends the results given in [1] and [3], and 
confirms that the periods in [2] are indeed the minimum periods for odd p. 

2. Preliminaries 

Given any sequence (̂ n̂ n>o °f integers, its generating function, A(x), is 
defined as 

n = 0 

Certainly, A(x) is a formal power series over the ring of integers. A period 
of {an (mod M)}n>0 will also be called a period of A(x) modulo M. The next 
theorem is obvious. 

Theorem 2.1: If (an}n>0 is generated by A(x) , then IT is a period of {an (mod 
M)}n>0

 if anci only if (1 - tf^MCtf) is a polynomial modulo M. 

We will study generating functions in the forms of l/f(x), where f (x) G 
E[x], and f(0) = 1. We have 

Theorem 2.2: Given /(a?), u(a0 G Z[ar] , where f(0) = w(0) = 1, let u and \if be 
the minimum periods of l/f(x) and l//(tf)u(#) modulo M, respectively. Then u 
divides uf. 

Proof: From the definition of u', we have 

1 - xV 
f(x)u(x) 

Therefore, 

i(x) e TLjx] . 
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1 - X»' 

fM 
= h(x)u(x) e EJx]. ML 

This implies that y r is a period of l/f(x) modulo M, However, y ' may not be 
the minimum period. Thus, y|yf. fj 

The next theorem is again obvious. Yet, it allows us to assume that M is a 
prime power. 

Theorem 2.3: Let p^1 ... p&s be the prime factorization of M, and let y(pf*) 
be the minimum period of {an (mod p6.1) } n > 0 • Then the minimum period of {an (mod 
M)}n>0 is the least common multiple of y(pfO, where 1 < i < s. 

Let \i(k; pN) be the minimum period of the sequence of Stirling numbers of 
the second kind {S(n, k) (mod PN)}n>]<' It is well known that 

f^S(n + k, k)xn = — . 
n = o (1 - x)(l - 2x) ... (1 - kx) 

It now follows from Theorem 2.2 that \i(k; pN)\]i(k + 1; pN) . We would like to 
know when \x(k; pN) = \i(k + 1; p^) . 

Theorem 2.4: Let i4 (#) be a formal power series over the ring of integers, and 
p € Z, where p > 1. Let IT be a period of A(x) modulo pN. Then TT is not a per-
iod of A(x) I (I - vx) iff v i 0 (mod p) and h(r~l) t 0 (mod p#) , where /z(#) is 
the polynomial (1 - x^)A(x) modulo p#, and p-1 is the inverse of p modulo p#. 

Proof: If p = 0 (mod p), then 1 - vx is invertible (mod pN). Thus, 

(1 - xTr)^(x)/(l - PX) 

is still a polynomial modulo ptf. Now assume that r $ 0 (mod p), and let 

/z(x) 

Then we have 

(1 ~ 
1 

D 

n = 0 

x 7 7 ) ^ ) _ /z(x) 
- P X 1 - P.T 

D-l / n 

\n=0 I\n=0 J 

i - 1 I m \ oo / I) 

E E v " " T + E 2>„r-
n = 0 \ « = 0 / 77? * Z? \ « = 0 

) ( P X ) W (mod ptf) 
m = /} \ n = 0 / 

is a polynomial modulo p N if and only if 

Z) 

£ anp"n = ̂ (p"1) E 0 (mod pN). D 
n = 0 

Therefore, to determine \i(k; pN), it suffices to find the minimum period of 
l/fk(x) modulo pN, where 

k 
fk(x) = n (i - ix). 

K i= 1 
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3. Stirling Numbers 

First of all, we determine u(/c; pN) for 1 < k < p. The following theorem 
is a routine exercise. 

Theorem 3.1: For 1 < k < p, \i(k; pN) is the least common multiple of the or-
ders of i modulo pN for 1 < i < k. 

For k > p, we use induction on N. The case of N = 1 is relatively simple. 

Theorem 3.2: If k > p, b > 2, then u(fc; p) = (p - l)pfe_1, where p b _ 1 < k < p b . 

Proof: If k = pb, b > I, then 

Pf e / P - 1 /> (x) = n (i - %x) = I n (i - ix)| 
p i= l U = l ; t = l 

= (1 - ^ - y ' " 1 = 1 - xCP" 1 )^" 1 (mod p ) . 

So, y ( p & ; p) = (p - D p ^ " 1 . T h e r e f o r e , \x(k; p) | (p - l ) p f c _ 1 fo r pb~l< k < pb, 
2? > 1. In p a r t i c u l a r , for a f ixed b > 2, 

I _ x ( p - l ) P b - 2 

7z(aj) = — = 1 (mod p) . 
Jpb-l (X) 

From Theorems 2.2 and 2.4, we know that 

(p - l)pb~2 = ij(pfc-1; p) divides \i(pb~l + 1; p) properly. 

Consider p b ~ l < k < p b , b > 2. On one hand, 

\i(pb~l + 1; p) divides u(Zc; p) , 

so (p - l)p^"2 is a proper divisor of u(/c; p) . On the other hand, 

\i(k; p) divides \\(pbl p) = (p - l)pfo-1. 

Therefore, u(fc; p) = (p - Dp2'"1. D 

The next lemma can be easily verified. We leave the proof to the reader. 

Lemma 3.3: Let f(x)e7L[x] such t h a t f ( 0 ) = 1, and l e t IT be a p e r i o d of l/f(x) 
modulo pN. Then pTT i s a p e r i o d of l/f(x) modulo p ^ + 1 . 

Corollary 3.4: For pb~l < k < pb, b > 1, \i(k; pN) always d i v i d e s (p - l)pN+b~2. 

Now we are ready to prove 

Theorem 3.5: For k > p > 2, and p^"1 < k < p , where b > 2, 

u(k; P^) = (p - Dp^+Z?"2. 

Proof: The case of /!/ = 1 is proved in Theorem 3.2. Assume it is true for some 
N > 1; we want to show that it is also true for N + 1. Because of Lemma 3.3, 
if p2>-l < k < p b

 y b > 2, then y(fc; pN + l) is either 

(p - l)pN+b~2 or (p - Dp/l7+Z?-1. 

In any case, for k = pb ~l, we always have 
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h(x) = — e 7LpN+i [x]. 
Tpb-i\X) 

If we are able to show that h((ph~l + l)"1) i 0 (mod pN+l), then 

(p - l)pN+b- 2 divides \i{ph~l+ 1; p N + 1) properly. 

This implies that y(p£-l + 1; pN+ 1) must be (p - l)p^+^"1. Then y(fc; pN+l), 
where pb -1 < \ < pZ?, will also be (p - l)pN+b~]1. Note that 7z(#) can also be 
rewritten as 

i _ r(p-l)pN+b-3 p - i 

h(x) = — x Y,*dip-l)lp 3-
Jpb-i \ x ) j = o 

From the inductive hypothesis on /I/, we have 

1 _ a.Cp-Dp^-3 

/pi-i (*) 
2 0 (mod p^). 

x = (ph~l+ l)'1 

On the other hand, it is easy to check that the highest power of p that divides 

xd(P~l)PN+b-3 I 
U = (P

b~i + 1 ) - 1 

is exactly p. Hence, h((pb~l + 1)_1) 2 0 (mod pN+l). Q 

Theorem 3.6: If p = 2, then 

(1) y(l; 2*) = y(2; 2*) = 1, 

(2 if /!/ = 1 or 2 
(2) y(3; 2*) = u(4; 2*) = < 

( 2/l/_1 if N > 3 
(3) y(fc; 2N) = 2^+Z?_2for 2^" l < k < 2 , b > 3. 

Proof: The proof is identical to that of Theorem 3.5 for b > 3. We have to de-
termine y(3; 2N) = y(4; 2N) separately. In this case, we study 

1 f E ^ V E 3Jxd) = t,K*n> 
\i=0 /\j=0 / ^ = 0 

A(#) (1 - tf)(l - 3a:). Xt = u , VJ: 

where £n = (3n+1 - l)/2. Thus, y(3; 2N) is the smallest n such that 

£n E 2>0 = 1 (mod 2*). 

That is, it is the smallest n such that 

3n = 1 (mod 2N+1). 

Therefore, y(3; 2^) satisfies (2) in the statement of the theorem. Q 

4. Final Remarks 

It is possible to obtain the same results without invoking any induction. 
However, the computation is more involved. We were also able to extend the 
result to the generating function l/f(x), where f(x) is a product of linear 
factors of the forms 1 - rx, v £ Z. These approaches will appear in a forth-
coming paper elsewhere. 
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Introduction 

Miles [5] defined the p-generalized Fibonacci numbers (p > 2) as follows: 
ur,n = °  (n = ~l> " 2> ~3> •••)» (la) 
UTi 0 = 1, (lb) 

v 
uv,n = X ur, n - i (n = 1, 2 , 3 , . . . ) . (lc) 

i = l 

In such a way, for r = 2, we get the ordinary Fibonacci numbers. The object of 
this paper is to present, in the first section, an elementary proof of the 
convergence of the sequences of ratios 

lr, n - 1 

using neither the theory of difference equations nor the theory of continued 
fractions. In the second section, we consider a geometric interpretation of 
the p-generalized Fibonacci numbers that is a natural generalization of the 
golden rectangle. Finally, in the third section, we consider electrical 
schemes generating these numbers. 

1. Convergence Results 

For each r > 2, we consider the sequence of ratios 

Rather than using the theory of difference equations to obtain a formula for 
uT} n and use it to prove the convergence of the sequence to the unique positive 
root of the polynomial 

pr(x) = xr - I > ^ (see [5]), 
i = 1 
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