CHARACTERIZATIONS AND EXTENDIBILITY OF P_{t}-SETS

Vamsi Krishna Mootha
(student)

Msgr. Kelly High Schoo1, Beaumont, IX 77707
George Berzsenyi
Rose-Hulman Institute of Technology, Terre Haute, IN 47803
(Submitted December 1988)
Let t be a nonzero integer and S be a set of three or more integers. We will say that S is a P_{t}-set if, for any two distinct elements x and y of S, the integer $x y+t$ is a perfect square. A P_{t}-set S will be termed extendible if, for some integer $d, d \notin S$, the set $S \cup\{d\}$ is a P_{t}-set.

The purpose of this paper is to characterize certain families of P_{t}-sets, and to show that some of these are not extendible. In particular, the result of Thamotherampillai [1], that the P_{2}-set $\{1,2,7\}$ is not extendible, will be obtained as an easy corollary.

To simplify the exposition, throughout this paper statements of congruences are to be interpreted modulo 4; i.e., $x \equiv y$ will mean $x \equiv y(\bmod 4)$.

Lemma: If S is a P_{t}-set and $a, b, c \in S$, then none of the numbers

$$
a(c-b), \quad b(c-a), \quad c(b-a)
$$

is congruent to 2 , modulo 4 .
Proof: By the definition of P_{t}-sets, we have

$$
a b+t=x^{2}, \quad a c+t=y^{2}, \quad b c+t=z^{2}
$$

for some integers x, y, and z. Upon eliminating t among the equations above, the result follows from the fact that perfect squares are congruent to 0 or 1 , modulo 4.

Theorem 1: If all of the elements of a P_{t}-set are odd, then they are congruent to one another, modulo 4.

Proof: Let S be a P_{t}-set, and $a, b, c \in S$. Observe that, if $a \equiv b \equiv 1$ and $c \equiv$ 3, then $a(c-b) \equiv 2$; while if $\alpha \equiv 1$ and $b \equiv c \equiv 3$, then $b(c-\alpha) \equiv 2$. Both of these conclusions are impossible in view of the Lemma; hence, either $\alpha \equiv b \equiv c$ $\equiv 1$ or $a \equiv b \equiv c \equiv 3$.

Theorem 2: If only one of the elements of a P_{t}-set is odd, then all of the others are congruent to 0 , modulo 4.

Proof: Let S be a P_{t}-set, and $a, b, c \in S$. Observe that, if $a \equiv 1, b \equiv 2$, and $c \equiv 0$ or if $a \equiv 3, b \equiv 2, c \equiv 0$, then $a(c-b) \equiv 2$; while if $a \equiv 1$ and $b \equiv c \equiv$ 2 or if $a \equiv 3$ and $b \equiv c \equiv 2$, then $c(b-a) \equiv 2$. Both of these conclusions are impossible in view of the Lemma; hence, if $a \equiv 1$ or 3 , then $b \equiv c \equiv 0$.

Theorem 3: P_{t}-sets of the form $\{4 k+1,4 m+2,4 n+3\}$ are not extendible.

Proof: Assume that $\{4 k+1,4 m+2,4 n+3, d\}$ is a P_{t}-set. If d is odd, then $\{4 k+1,4 n+3, d\}$ is a P_{t}-set all of whose elements are odd. However, $4 k+1$ $\not \equiv 4 n+3$, contrary to Theorem 1 . If d is even, then $\{4 k+1,4 m+2, d\}$ is a P_{t}-set with only one odd element, $4 k+1$. But $4 m+2 \not \equiv 0$, contrary to Theorem 2. Consequently, such d cannot exist.

Corollary: The P_{2}-set $\{1,2,7\}$ is not extendible.
At this point, the authors wish to express their appreciation to Bud Brown, who sent them a copy of [2] upon reading [3], and hence called their attention to [1]. It may also be noted that Thamotherampillai's proof of the corollary is much more complicated, and its method does not allow for generalizations.

In conclusion, we provide a table of examples which shows that all of the cases not disallowed by Theorems 1 and 2 are indeed possible. In the "congruence type" column, the members of S are reduced modulo 4 to allow for a quick review; thus, for example, the P_{97}-set $\{3,8,24\}$ is type $[3,0,0]$ since $3 \equiv 3$ and $8 \equiv 24 \equiv 0$. In this terminology, P_{t}-sets of types $[1,1,3]$ and $[1,3,3]$ do not exist in view of Theorem $1, P_{t}$-sets of types [1,2,2], [1,2,0], [3,2,2], and [3,2,0] do not exist in view of Theorem 2; and P_{t}-sets of type $[1,2,3]$ are not extendible in view of Theorem 3.

Table of Examples

Congruence type	S	t
$[1,1,1]$	$\{1,5,33\}$	31
$[3,3,3]$	$\{7,11,23\}$	323
$[1,0,0]$	$\{5,8,16\}$	41
$[3,0,0]$	$\{3,8,24\}$	97
$[0,0,0]$	$\{4,12,32\}$	16
$[2,0,0]$	$\{2,12,420\}$	1
$[2,2,0]$	$\{2,6,16\}$	4

Congruence type	S	t
$[2,2,2]$	$\{2,10,22\}$	5
$[1,1,0]$	$\{1,9,20\}$	16
$[1,1,2]$	$\{1,5,10\}$	-1
$[1,3,0]$	$\{1,7,16\}$	9
$[1,3,2]$	$\{1,79,98\}$	2
$[3,3,0]$	$\{3,27,60\}$	144
$[3,3,2]$	$\{3,7,2\}$	-5

References

1. N. Thamotherampillai. "The Set of Numbers \{1, 2, 7\}." Bull. Calcutta Math. Society 72 (1980):195-197.
2. Ezra Brown. "Sets in Which $x y+k$ is Always Square." Math. Comp. 45.172 (1985): 613-620.
3. G. Berzsenyi. "Problems, Puzzles and Paradoxes: Discoveries." Consortium No. 25 (March 1988):5.
