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1. Introduction and Definitions 

A rooted tree, x, is a partially ordered set whose Hasse diagram is a tree 
(in the graph-theoretic sense of the term) having a unique minimal element 
called the root, see Figure la. If |x| = n, a natural labeling of x is a bisec-
tion T: x •> {1, 2, . .., n} such that v < w in T implies T(v) < T(w). One such 
labeling is given in Figure lb. In this case, we say T has shape x. We let fT 
represent the number of natural labelings of x. 

The hook of a node V € x is 

Hv = {we T\w > v} 

with corresponding hooklength hv = \HV\. The hooklengths of our example tree 
are displayed in Figure lc. The well-known hook formula [3] for the number of 
natural labelings states that 

L / V G T 

Thus, in our example fT = 7!/(7)(3)(2)(1)4 = 120. 

1 7 
(a) (b) (c) 

A tree, a labeling and the hooklengths 

FIGURE 1 

In Section 2 we will give a simple probabilistic proof of (1.1) inspired by 
an algorithm of Greene, Nijenhuis, and Wilf [1] for standard Young tableaux. 
The tree version has previously appeared in [5], but is included here for com-
pleteness. An algorithmic derivation of the hook-generating function for 
reverse tree partitions [which specializes to (1.1) as the variable approaches 
1] can be found in [6]. 

A Fibonacci tree [9] is a finite lower-order ideal of the infinite poset in 
Figure 2a. The name derives from the easily proved fact that the number of 
Fibonacci trees with n nodes is the nth Fibonacci number. For example, Figure 
2b shows the five Fibonacci trees with four nodes. Let Ĵ n be the set of all 
Fibonacci trees with n nodes, then 
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E f? = nl (1 .2 

(a) W 
Fibonacci trees 

FIGURE 2 

Formula (1.2) has a bijective proof due to Bender (reported in [9]). I 
Sections 3 and 4 below we will give two constructions that build a labeled tre 
T E &n with probability f^/n !, thus proving (1.2) twice. The first algorith 
constructs the tree "from without" as done for tableaux in another paper o 
Greene et al. [2]. The second builds the tree "from within" and is based o 
work of Pittel [4]. 

2. Choosing a Labeling Uniformly 

Let T be a fixed shape with n nodes. The following algorithm can be use-
to choose a labeling of x. 

GNW1. Pick a node VET uniformly at random, i.e., with probability l/n. 

GNW2. If v is maximal (a leaf), then let T(v) = n and return to GNW1 wit 
T and n replaced by T - {v} and n - 1, respectively (unless there are no node 
left, in which case the algorithm halts). 

GNW3. If V is not maximal, then choose a different node w E Hv uniforml 
at random, i.e., with probability l/(hv - 1), and return to GNW2 with w in th. 
role of v. 

A sequence of nodes generated in the process of finding a vertex to t 
labeled (in this case by the loop between GNW2 and GNW3) is called a trial. P. 
example of a typical trial is given in Figure 3. 

Prob(v): 1/11 1/6 1/2 

A GNW trial 

FIGURE 3 

Theorem 1: If T is a fixed rooted tree with n nodes, then GNW1-3 produce aJ 
labelings of T uniformly at random. In fact, the probability of any give 
labeling is 

11 hv/nl 
v e T 

Proof: Let w be any maximal element of T and let W be the set of vertices c 
the unique path from w to the root of T (excluding w itself). Note that thei 

202 [June-Jul . 



PROBABILISTIC ALGORITHMS FOR TREES 

are the only vertices whose hooklengths are changed if w is removed from T dur-
ing GNW2. Therefore, by induction, it suffices to show that the probability 
that w gets label n is 

P(w) = (1/n) Uhv/(hv - 1) 
V G W 

= (i/n) n (i +r-!—r)-
But 1/n is the probability of choosing an initial node and each term in the 

expansion of the product corresponds to the probability of a unique trial 
ending in w, D 

As an immediate corollary we have 

Corollary 2: The number of labelings of a given tree x with n nodes is 

/T = n\/Y\hv. • 
/vex 

3. Fibonacci Trees Grown from Without 

It will be convenient to introduce coordinates for the infinite tree of 
Figure 2a. Let the nodes of the "spine" be (i, 0) for £ = 0, 1, 2, ... while 
the leaves are denoted by (£ , 1) for the same range of i . Now, any Fibonacci 
tree can be specified by its coordinates as is done in Figure 4a. 

(2,1) 

\/(3,0) 

(0,1) 7(2,0) 
\/Tl,0) 

(0,0) 

(a) (b) 
Coordinates and the associated tree 

FIGURE 4 

Given any vertex v = (i, j ) , then v has associate vJ = (£, 1 - j). If x is 
a Fibonacci tree with spine of length s, then the associated tvee is 

x ' = {v = (i, j)\vr e x or i = s + 1}; 
see Figure 4b where the associated treefs nodes are the open circles. Note 
that T! is "upside down" with root r = (s + 1, 1). 

Now suppose we wish to build a labeled Fibonacci tree, T. Assume that the 
first m - 1 vertices of T have already been constructed and given the labels 1, 
..., m - 1. Let x be the current shape of T with associate xf whose root is p. 
To add a node labeled m to T we proceed as follows: 

WNG1. Choose a v € x' - {v} uniformly at random. 

WNG2. If v £ x, then add V to x with label m and halt. 

WNG3. If V e x, say v = (£, j) , then return to WNG1 with x' replaced by 
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F igure 5 p r e s e n t s an example of a t r i a l gene ra t ed by WGN1-3. 

Prob(v): 1/7 1/5 1/2 

A W N G trial 

FIGURE 5 

If this procedure is used iteratively for m = I, 2, . . , 9 n to produce a labeled 
Fibonacci tree, then let P(T) be the probability that labeling T is created. 
Thus, the total probability of producing a given shape T is P(x) = ZP(T), where 
the sum is over all labelings T of T. 

Theorem 3: If T is a Fibonacci shape with n nodes, then iteration of WNG1-3 
produces all labelings of T with total probability 

P(T) = fT2/n! 

Note: It is not true that WNG1-3 produces each labeling of T with probability 
P{T) = fT/nl. 

Proof: Let x have leaves W\> W^* ...» Wĵ  and define the subtrees x̂  = x - {w^} 
for all i . Let P(W^\T^) denote the probability that Wi gets labeled n after 
the algorithm constructs some labeling of x^ . Hence, by the definitions above 
and induction, 

P(T) = E ^ ^ O ^ I n ) = Z(fT
2 /(n- 1 ) ! ) P ( W J T * ) . 

Let the wn- be arranged in order of increasing first coordinate, i.e., 

(3.1) 

/1 - (ax, 1), ..., wk_l = (ak„i> 1), wk = (ak, j), 
where GL\ < ••• < a^ and j may be 0 or 1. We need a couple of lemmas to help 
compute the quantities in (3.1). 

Lemma 4: Let x and the wt be as above, then 

fc-i 
/T = II (n - ai - i). 

i = 1 

Proof: Using the hook formula (Corollary 2), we see that every term in the n\ 
is canceled by a hook of x except those in the product above. • 

Lemma 5: Let x and the w^ be as above, then 

i - 1 / 2 
PCWJT;) = d/n) n (i + — 

.7 = 1 V n ao - 3 T)-
Proof: Initially we can pick any one of the n nodes in x ' - {r}. Any trial 
ending at w^ can only pass through those Wj with j < £ and their associates wf-. 
Landing on either of these two reduces the number of available nodes in 
TJ - {T} to n - <Zj - g - 1, accounting for the second term of the binomial 
above. Q 
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For n o t a t i o n a l convenience , l e t b± = n - ai - i . Hence, by Lemma 4 , 

fT = blb2 . . . bk^ 

and 
fT. - tt>i " 1) • •• «> i - i - Dbi + l . . . bk.x. 

Also , from Lemma 5 , 

Thus, 

/T
2 P K | i { ) / ( n - 1 ) ! = ( l / n ! ) { O (2>? - 1 )U O 2>?\. 

U < j < i J J U < j < k 3 ) 

Plugging this expression into (3.1), we see that the sum of products telescopes 
(from the right-hand end) so that 

P(t) = b\ . . . bl_Yln\ = ff/nl 

as d e s i r e d . Q 

The obvious corollary is 

Corollary 6: E fT2 = n ! • 

We should also note that this algorithm has a "zone effect" similar to the 
original one for Young tableaux. Specifically, if v = (a, 1) and w = (b , 1) 
with a^ < a, b < a^+1, then by Lemma 5 we have P{V\T) = P(W\T) * This observa-
tion will be useful in the next section. 

4. Fibonacci Trees Grown from Within 

Given v e x, then v is a singleton if V f £ x and a doubleton otherwise. In 
Figure 6a, the singletons are (0, 0), (3, 0), (4, 0), and (6, 0), with the rest 
of the vertices being doubletons. If x has a spine of length s, then the 
corresponding extended tree is 

T" = TU{V!\V e x is a singleton} u {(s + 1, 0)}, 

see Figure 6b. The elements of T" - x are organized into zones, which are 
maximal strings of vertices with consecutive first coordinates. Zones are 
numbered from the bottom up starting with zone 0, e.g., in Figure 6, 

Z0 = U 0 , 1)}, Zl = {(3, 1), (4, 1)}, Z2 = {(6, 1), (7, 0)}. 

In the same way, the doubletons of x are grouped into bands with band i direct-
ly below zone i. In our example, the bands are 

B0 = 0, Bl = {(1, 0), (1, 1), (2, 0), (2, 1)}, Bz = {(5, 0), (5, 1)}. 

3 P 

A tree and the extended tree 

FIGURE 6 
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Finally, it will be convenient to have a total order on the vertices. If 
V = (i, j) and w = (x, y) , then we will write v <t w if i<x or i = x and j^y> 

Now, given a labeled Figonacci tree T of shape T on m - 1 nodes, we find a 
node of w E T" - T to label m by constructing a trial as follows. As usual, 
":=" is the Pascal assignment symbol. 

PI. Let v := (0, 0) with probability 1. Let the set of predecessors of v 
be P := 0. 

P2. Set P := PU{v}. 

P3. Pick zj uniformly at random from among the set, D, of possible direct 
successors of v = (t, j) defined by: 

(a) if v is a doubleton, then D = {w E T" - P|w>tz;}. 

(b) if y is a singleton, then let 5 be the band of largest index 
containing an element of P and let b be the maximum node of B 
(with respect to <t). In this case 

D = {w e T" - P|u >t b} - {ZJ a singleton|u < y}. 

If 5 does not exist, i.e., P consists only of singletons up to 
this point, then we take b = (0, 0). 

P4. If w e T" - T, then halt, else return to P2 with w := V. 

Note that the trials generated by Pl-4 do not necessarily respect the par-
tial order in T and the sequence of P's computed in P3 is not ordered by 
containment. For example, if a trial in the tree of Figure 6 has begun (0, 0), 
(4, 0), then the next node could be any one in T" except the two initial nodes 
and (3, 0). If the trial continues to (1, 1), then any nontrial vertex (i, j) 
with i > 1 is available for the next choice, including (3, 0). However, if the 
trial begins (0, 0), (1, 1), (4, 0), then the only possible successors are 
vertices (3, 1), (4, 1), (5, 0), (5, 1), (6, 0), (6, 1), and (7, 0). 

Nevertheless, these rules do provide the desired distribution. 

Theorem 7: If T is a Fibonacci shape with n nodes, then iteration of Pl-4 pro-
duces all labelings of x with total probability 

P(T) = fr
2/nl 

Proof: It suffices to show that Lemma 5 is still true when using Pl-4. It will 
be convenient to reformulate the Lemma slightly for this setting. Let A be a 
Fibonacci tree with n - 1 nodes and leaves w^, W^* ••• with first coordinates 
ai < a2 < ••. . 

Lemma 8: With A as above and w e X" - A in the kth zone, then the probability 
of terminating a Pl-4 trial at w is 

P(w) = (l/n) n (l + 2—: r). 
Wj € Bi , i < k V n - CLj - J - 1 ' 

Proof: Induct on fe . We will provide an explicit proof of the induction step, 
the anchor step being similar. 

The trials t: VQ = (0, 0), V\> ..., w are of two types, those that pass 
through an element of Bk and those that do not. The latter are in bijective 
probability preserving correspondence with trials VQ, T^, ..., wr, where wr e 
Zfc-i- In the former case, if VA 6 B^ is the first such node then VQ, ..., Vs _ \ , 
w' is a legal trial having the same probability as the initial segment of t. We 
will show below that the sum of the probabilities P of all possible final seg-
ments vJ , ̂ j+l' •••» -w is independent of both the particular node of Bk and the 
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initial history of £. Thus, by induction, it suffices to demonstrate that 

2 
1 +P\Bk\ n (i +

 2—^1) 

But the right side above telescopes to (s + |5^|)/s, where s is the denomi-
nator corresponding to the largest leaf in By that has coordinates (a, 1), say. 
It is easy to see that if we consider the subtree a = {{i, j) G A | i > a} then s 
= |o" | + 1. Hence, to finish the proof of the theorem, we need only show 

Lemma 9: Let t , V = Vj, P, and a be as above. Then P is independent of the 
set of nodes on t prior to v and of V itself (as long as V G By). In fact, P = 
l/(|a| + 1). 

Proof: Let {y = ui <t 2^ -t • • • -t um^ be- the set of all possible vertices that 
could appear on t from v up to (but not including) w> i.e., the set of all ele-
ments above v that are either elements of By, or singletons not previously on t . 
Because of these restrictions, the set of direct successors, D(u^), does not 
depend on the previous Uj chosen and, in fact, we have 

BiM-i) - {uAj > i} U {v G o"\v is not a singleton in 0} 

Thus, 

and 

Hence, 

= D(ui_l) - {wi}. 

\D(um)I = \{v G on\v is not a singleton in o}\ = \o\ + 1 

\D(Ui)\ = \B{ui_{)\ - 1-

P= , l , ( i + 1 L \ . . . ( 1 + i ^ _ \ = i _ _ 

as desired. D 

Of course, Theorem 7 gives another proof of Corollary 6. 

5. Remarks and Open Questions 

Another point of similarity between Fibonacci trees and standard tableaux 
is the formula 

where In is the number of involutions in the symmetric group Sn. The corre-
spondence of Bender [9] mentioned in the introduction also proves (5.1). Is 
there a probabilistic way to demonstrate this, either for trees or tableaux? 

A third family of posets that displays behavior similar to that of standard 
tableaux and rooted trees are the shifted standard tableaux [3] . The shifted 
analog of the hook formula (1.1) has been proved probabilistically by one of us 
[7]. It would be interesting to find an aleatory proof of the "sum of squares" 
equation in the shifted case (see [8] for the exact formula). 

Finally, tableaux and shifted tableaux are intimately connected with repre-
sentations of Sn . Ordinary tableaux give the degrees of ordinary irreducible 
representations (using matrices in GLn), while their shifted cousins are 
related to projective ones (those using PGLn9 the projective linear group). In 
this setting, the analog of (1.2) expresses the fact that the sum of the 
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squares of the irreducible degrees equals the order of the group. Can (1*2) 
itself be recast in this light? Specifically, is there a group of matrices G 
such that the degrees of the irreducible representations p:Sn •+ G are given by 
the fT ? 
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