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We recall the Zeckendorf Theorem and its dual, credited to E. Zeckendorf, 
which deals with the representation of integers as sums of distinct Fibonacci 
numbers. These theorems were restated and proved by J. L. Brown, Jr., ̂in [1] 
and [2]. Throughout this paper, we let N denote the set of positive integers. 

Zeckendorf Theorem: If n e N, n may be uniquely expressed in the following 
form: 

n = Z QkFk+1, (1) 
fe = i 

where 
6k e {0, 1}, Qk = 0 if k > r, and Qk + dk+l < 2, k = 1, 2, ... . (2) 

Dual Zeckendorf Theorem: If n£N, n may be uniquely expressed in the form 
shown in (1), but with the conditions: 

Qk € {0, 1}, Qk = 0 if k > is and Qk + Qk+1 > 0, k = 1, 2, ..., P. (3) 

[Note: The usual statement of the condition on the O^'s in (2) is, 6^0^+1 = 0, 
which is equivalent. The condition as stated in (2) is more amenable to the 
proper generalization.] 

Before stating and proving the appropriate generalizations of the above 
theorems, we introduce some useful definitions. 

Given integers b and t with Z? > 2, t > 2, we say that a given integer n £ N 
is by t-up'pev representable iff there exists an increasing sequence 

of positive integers such that n may be uniquely expressed in the following 
form: 

n = E Bk(b, t)Hk(bs t), (4) 
k = l 

where 
dk(b, t) e {0, 1, ..., b - 1}, efe(Z>, t) = 0 if k > r, (5) 

and 
9fe + 0fe+l + ••• + Gfc+t-l < Q> ~ Dt> fe = 1, 2 , . . . . (6) 

We say t h a t n e N i s b, t-lower representable i f f t he same c o n d i t i o n s hold as 
i n (4) and ( 5 ) , but (6) i s r e p l a c e d by: 

h + h + i + ••• + e* + * - i > o, k = i, 2 , . . . , p . (7) 
Let S(H) and T(^) denote the sets of b, t-upper representable and b, t-lower 

representable numbers, respectively. For brevity, we may write the sum in (4) 
in the form: 

n = ( e r e r _ l ... e2e1)/ 7, (8) 
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omitting the arguments "b9 t" where no confusion is likely to arise. We may 
j.et the notation in (8) represent the b9 t-representation of n [an element of 
S(H) or T(H)] as well as the value of the sum indicated in (4) [an element of 
S(H) or T(H)]. Here, S(H) and T(H) denote the sets of £,£-upper and -lower 
representations, respectively, of the form given in (8). Note that_condition 
(6) for b, t-upper representations states that no representation in S(H) is to 
contain t consecutive digits, equal to (b - 1); similarly, condition (7) re-
quires that no element of T(E) is to contain t consecutive digits equal to 
zero. _ _ _ _ 

Let Sr(H) and Tr (H) denote the subsets of S(H) and T(H) , respectively, 
which contain v digits in the representation (that is, with_0r > 0, Qk_j= 0, if 
k > v > 1). Let the corresponding integers represented by Sr(H) and Tr(H) be 
arranged in nondecreasing order (as yet, we do not know if any duplication 
occurs), and call these ordered sets Sr(H) and Tr(H), respectively. Let Ur(H) 
and Vr(H) denote the sizes of Sr(H) and Tr(H), respectively, that is, 

Ur(H) = \SP(H)\, VV(E) = \TT{H)\. (9) 

Let Ar(H) and Br(H) denote the smallest and largest values, respectively, of 
Sr(H); let CV(H) and Dr(H) denote the smallest and largest values, respectively 
of Tr(H). Finally, we observe that: 

S(H) = &Sr(H), T{E) = (jTT(H). (10) 
r = 1 r = i 

We may now express and prove the following theorems. 

Theorem 1 (Generalized Zeckendorf) : We define the sequence G = (Gk(b, t))fe = 1 
as follows: 

Gk = bk~l, k = 1, 2, ..., t; (11) 

Gk+t = (b - l)(Gfc+t-i + G*+t-2 + ••• + Gk+l + fy), k = 1, 2, ... . (12) 
Then 

N = S(G). (13) 

Moreover, if N = S(H) for some sequence H = (Hk(b, t))k=1, then H = G. 

Theorem 2 (Generalized Dual Zeckendorf): If G is as defined in (11) and (12), 
then N = T(G). Moreover, if N = T(#) for some sequence H = (Hk(b, £))£=1, then 
# = G. 

Proof of Theorem 1: We begin by deriving the values of Ur(H). Since 

6x e {1, 2, . . . , Z ? - l } i f p = l 5 

we have 
Ul(H) = b - 1 = G2 - Gx. 

If v = 2 (with t > 2), then 

0! € {0, 1, 2, ..., b - 1} and 62 e {1, 2, ..., b - 1}, 

independently, so 

U2(H) = b(Z) - 1) = £3 - G2. 

Continuing in this fashion, we see that 

UP(H) = br~l(b - 1) = Gr+1 - Gr, r = 1, 2, ..., t - 1. 

Setting & = 1 in (12) yields: 

Gt+1 = (b - Dib1'1 + &*"2 + ... + 1) = 2?* - 1. 
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Also, note that St(H) may be generated by (b - 1) choices for 6t and b choices 
for each of 0̂ -J.J ©t-2> •••» ®ll however, we must subtract from this composi-
tion the (one) choice where all digits are equal to (b - 1). Therefore, 

Ut(H) = b^Hb - 1) - 1 = 2>* - 1 - b*'1 = Gt + l - Gt. 

So far, we have shown: 

Ur(H) = Gr + 1 - Gr9 r = 1, 2, . . . , t . (14) 

Next (for brevity, omitting the argument "#") , assuming JW > t, we let S^ and 5̂ ' 
denote the subsets of Sm with initial digit in {1, 2, ..., b_- 2} and equal to 
(b - 1), respectively. Let £/„J and Z7̂[ denote the sizes of S^ and 5J[, respec-
tively. Also, let 

w„ = uL+u2 + ... +um, wm = u[ + u{ + ... +u^. 
Now Sm = S^ U SfZ; thus, Um = Um + U%, In what follows, we let x represent any 
of the digits in {1, 2, ..., b - 2 }, y = (b ~ 1), and 0 the zero digit; also, z 
represents either x or y. We note that Sm

f may be formed in any of the follow-
ing (mutually exclusive and exhaustive) ways: 

y^-i 
yysm-i 

yy^y^m~t+i 
t-1 

y°Sm-2 
yy°sm-3 

yy^j^m~t 
t-1 

yoosm^3 

yyOMm-h 

yy^j00^m~t-i • 
t-1 

. . y00...0QSt_l 

. . 2 / 2 / 0 0 . . . 0 S t _ 2 

. . 2 / 2 / . . . 2 /00 . . . O O ^ 

t - 1 

2 / 0 0 0 . . . 0 

2/2/00. . . 0 

2 / 2 / . . . 2 / 0 0 . . 

£ - 1 

Therefore, 

y™ = (Wm'-1 + ^-2 + ••• + K-t + l* + (ym-2 + -̂3 + ••• + W 
+ (ua_3 + um^ + ... + t /m_t- i) + ... + (ut_l + ut_2 + ... + u^ + t - i. 

Taking the first difference, we obtain: 

C-i ~ K = K - K-t+r + w,-i ~ K-t- d5) 
Next, we consider the possible ways to generate 5', namely, as follows: 

xSm_19 xOSm_2i x00Sm_3, ..., x00...0051, or #00...00. 
Since x may be chosen in b - 2 ways, we have: 

U> = (b - 2)(t/m_1 + Um_2 + . . . + U1 + 1) = (b - 2HWm_1 + 1). 

Taking first differences in the last expression, we have: 

£/„'+1 - K ' (b - 2)Um. (16) 

Now, adding the expressions in (15) and (16), we obtain: 

= (i - 2)(A/m_1 + 1 - Vm_t - 1) + {*„_! - Wm_t + (b - 2)Un; 
hence, 

um+1 - (i - D(um + wm_x - wm_t) = (b - i)(wm - wm_t). 
Equivalently, 

Um+l - (2> - l){Um + ^ ^ + . . . + tfn_t + 1 ) , (17) 
w = t, t + 1, t + 2 , . . . . 
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Note that (17) is the same recursion satisfied by the Gm*s in (12). Since Gm + i 
and Gm satisfy this recursions so does Gm+i - Gm. It follows from (14) and 
(17) that we have: 

Ur(H) = Gr+l - Gr, v = 1, 2, ..., for all H. (18) 

Next, we derive expressions for Ar(H) and Br(H) [recalling that these are 
the smallest and largest values, respectively, of Sr(H)]. For any admissible 
H, we see that 

AT(H) = (lOO^O)^, 
V - 1 

or, equivalently, 

Ar(H) = Hr. (19) 

In particular, 

Ar(G) = Gr. (20) 

Also, using the notation introduced earlier, we see that 

Br(H) = (yy...y y - i yy.. .y y - l ... yy-—y y - i yy°°-y)H> 
t- 1 £- 1 t-1 v 

where p = wt + y , 0 < t ; < t 5 

and in the above representation there are u blocks of length t of the type: 

yy- ..y y - i. 
Therefore, 

Br(H) = (b - l)(Hr + Hr_1 + ... +Hl) - (fl„ + 1+(u_1)t + ••• +fiu + 1 ) . 

In particular, 

Br(G) = (fc - 1) L ( ? k + (fc " 1) E E ffy+J-t + fc - E Gy + l + j t 
fc - l j = o fc = i j - o 

= E 0> - Dfe""1 + " E c „ + i + 0 - + i ) t - E c u + i + J - t 
fe = 1 j = 0 j = 0 

= &" - 1 + Gv+1+Ut - Gv+l = bv - 1 + ffr+1 - bv, 
or 

5r(ff) = ^ + 1 - 1. (21) 
By definition of Ar(G) and Br(G), we see from (21) that the Sr(G) are disjoint. 
Moreover, from (20), (21), and (18), we have: 

Br(G) - Ar(G) = Gr+l - Gv ~ I = Ur(G) - 1, (22) 

Thus, the difference between the largest and smallest elements of Sr(G) is one 
less than the number of elements in Sr (G) . If we can prove that N C S(G) 
(i.e., that all positive integers have a b, t-upper representation, with G the 
underlying sequence), this in turn will imply that N = S (G) . We will need a 
lemma. 

Lemma: (b - l)Gm < Gm+i < bGms m = 1, 2, ... . 

Proof: The left inequality is clearly true, from (11) and (12), If 1 < m < tn 
Gm = bm~~l

s so Gm+i - bGm in the range 1 < m < t . Also Gt+i = bt -.1 < bGt. 
Replacing k + t by m + 1 and /??, respectively, in (12), and subtracting the re-
sults, we obtain: 
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Gm+l 

bG„ - G, 

G„ 

m + l 

(b - l)(Gm - Gm_t) 

- (b - DGm_t, if m > t . 

Therefore, if m > t, bGm > Gm+l, which yields the right inequality in the state-
ment of the lemma. 

Let Jr denote the set {1, 2, . .., Gr - 1}, r = 2, 3, ... . Assuming 2 < r 
< t, Gr = b'r~^, so if n 6 Jr , n may be uniquely represented as a b-ad±c number 
with digits in {0, 1, . .., b - 1 }; this representation is also a b, t-upper 
representation, as well as a b, t-lower representation. Hence, 

JT C S(G), Jr C T(G), if 2 < r < t . (23) 

Note that Jl = 0, J2 = {1, 2, ..., Z? - 1}. 

Suppose next that r > t, and assume Jr C S(G); this inductive hypothesis is 
seen to be true for r = t . Given an integer nr with Gr < nr < (?r+1, then 

pGr < n' < (p + l)Gr, where 1 < p < b - 1. 

Then 0 < nf - pGr < Gr, so (n' - pGr) e Jr . Hence, by (23), 

(nr - pGr) e S(G), 

which implies that 

n' - pGr = (6r_10r_2 ... QZ^OG* 

which is an element of Tr_i(G) (note that 
contradiction). Therefore, 

Or, 

3P = 0, otherwise nf - pGr > Gr, a 

1DG n1 - ( p 0 P _ 1 0 r _ 2 . 

A p r i o r i , we c o u l d h a v e 

p = QT„i = Qr-z = ° ° " = ®r-t+i = b - I; 

i f s o , 

n' > (b - l)(Gr + Gr.l + . . . + Gr_t + l) = Gr + 1 , 

which would be a contradiction. Hence, n' G S(G). Therefore, if r > t and 
Jr C S(G), we must have the set 

{Gr, Gr + 1, Gr + 2, ..., bGr - 1} C 5(G^). 

However, by the Lemma, 6>+1 < Z?^. Therefore, Jr C S (G) implies Jr+i C S(G) . 
Due to (23), it follows by induction that 

r = 2 

But £ is an increasing sequence, so 

(jJr = #. 
r = 2 

Thus, 71/ C S(G) . By our previous comments, it follows that /l/ = S(G); in other 
words, there is a 1-to-l correspondence between N and S(G). 

The final part of Theorem 1 states that G is the only sequence generating 
b, t-upper representations. To prove this, we will assume N = S(H) for some 
sequence H = (Hk(b, t))k=sl. Since H must be increasing, and since 1 must have 
a (unique) representation, it is apparent that Hi = I. Then, by (18) and (19), 

Ur(H) = Gr+l - Gr and Ar(H) = Hr. 

Also, since the Sr(H) must be disjoint, and since all representations must be 
unique, we must have 
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Br(H) = Ar+l(H) - 1; 

therefore, by (19), Br(H) = Hr+1 - 1. Also, however, we see that 

Br(H) = Ur(H) + UP.l(H) +...+#!(#), 
so 

v 
Br{E) = £ (Gk + l - Gk) = Gr+l - Gl = Gr+l - 1. 

Therefore, Br(H) = Hr + l - 1 = Gr + i - 1, so Hr+l = £p+1 for all v > 1. It fol-
lows that H = G, which completes the proof of Theorem 1. 

Proof of Theorem 2: The proof follows that of Theorem 1. We begin by deriving 
the values of Vr(H). The initial values of VT{U) are derived by reasoning 
identical to that used in the derivation of the initial values of Ur(H), with 
the exception of Vt (H). Thus, 

VP(H) = (b - l)br~l, v = 1, 2, ..., t - 1, 

i.e., in this range, Vr (H) = (b - l)Gr. For T-^(H), we must avoid t consecutive 
zero digits; this will automatically be satisfied if Qt > 0. Hence, 

Vt(H) = (b - D M " 1 = (b - l)Gt. 

Thus, 

Vr(H) = (b - 1)GP, r = 1, 2, ..., t . (24) 

Next, we observe that if m > i, Tm+i(H) may be formed in the following mu-

tually exclusive and exhaustive ways (using the same notation as before): 

t- l 
Since z may be chosen in {b - 1) ways, we have: 

vm+l = (b - i)(vm + V i + ••• + ^ - t + i ) ' <2 5) 
m = t, t + 1, t + 2, ... . 

Note that (25) is the same recursion as satisfied by the £m's (and the Um
1s). 

We conclude from (24) that 

Vp(H) = {b - l)Gr, r = 1, 2, ..., for all H. (26) 

Next, we derive expressions for Cr (H) and Dr(H), the smallest and largest 
values, respectively, of Tr(H). We see that, for any admissible H, 

Cr(H) = (100...0 10(^0 ... lQCh^O lQCL^J))^, 
t- 1 £- 1 £-1 v- 1 

where r = ut + V, 1 < v < t , 

and the representation above contains u blocks of t digits, of the type 

100...0. 

Hence, 

Crm = E Hv+jt. (27) 
j =0 

Also, it is clear that Dr(H) = (yy...y)H, or 
V 

Dr(H) = (b - 1) £,Hk. (28) 
k= l 
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In p a r t i c u l a r , Dr (G) = (b - 1)(G1 + G2 + ••• + Gr). I f 1 < V < t - 1, then 

-fc + j'Tfc ^P((?) = (* - 1 ) E Gk + (b - 1 ) E E GV+) 
k=l j = 0 k=l 

= (2> - D E ^ " 1 + W E 1 ^ + 1 + ( J - + i ) , 
k = l j = 0 

u u 
= b - 1 + E GV + l + jt = b - 1 + H ^V + l + j f " ^y+l 

j = 1 j = 0 

= i u - 1 + C r + 1 (G) - ^ , 
or 

Z?r(G) = Cr+l(G) - 1, where r = u£ + v , v = 1, 2 , . . . , t - 1. (29) 

Also s i f v = £, then r = (w + l ) t , so 

(U + l ) t M + 1 
Z?r(G) = (2? - 1) E Gfc = £ G1 + , t ; 

fc = i j = i 

note that in this case 
(u + 1) blocks of t digits u + l 

Gr+1(G) = (100...0 100...0 ... 100...0 1)G = E Gl+jt 
t-l t-l t-l j = 0 

= DV(G) + (Gl = 1), 

which shows that (29) holds also for v = t . We may therefore conclude: 

Dr(G) = Cr + l{G) - 1, r = 1, 2, ... . (30) 

Note, from (28), that 

£pO0 - ̂ .itfl = (2? - l)#P, 
so 

£r(G) - 0r_i(G) = (b - l)Gr = 7r(G). 

Using (30): 

Dr(G) - Cr(G) = Vr(G) - 1. (31) 

We see from (30) that the Tr(G)'s are disjoint, by definition of the CT(G) and 
Dr(G). Thus, as before, If we can establish that N C T(G), (30) and (31) would 
imply that tf = T(G). 

Recall that Jr C T(£) for 2 < r < t . Suppose next that r > t, and assume 
Jr C T{G) . Given an integer n;/ with Gr < n" < Gr + i, it must satisfy 

pGr < nf! < (p + 1)6>, where I < p < b - I; 

then 0 ^ n/; - pGr < Gr, so (n!t - p£P) € T(6!), by the inductive hypothesis. Now 

n" - pGr = (0r_10P_.2 ... eOG9 

which is an element of Tr_l(G) [for, if Qr > 0, then (n" - pGT) > Gr, a contra-
diction) . Thus, 

n" = (p0P_10P_2 ... 0 X ) G 3 

so nn e T(G). Hence, if r > t and Jr C T(G)9 we have that 

{GT, Gr + 1, . .., 2?Gr - 1} Is a subset of T(G0 . 
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Since Gr+1 < bGr, by the Lemma, JY C T(G) implies Jr+ x C T(G) . So, as before, 
N C T(G). By our previous remarks, N = T(£). 

To prove that G is the only sequence allowing bs £-lower representations, 
we suppose that N = T(H) for some sequence H. Then 

M # ) = (£ - l)Gr, from (26). 

Since /!/ = T(G) = r(5), it follows that 

Dr(H) = Cr+1(#) - 1. 

Also, 

Dr(H) - Dr_l(H) = (b - l)Hri from (28). 

But 

Dr(H) = Vl(H) + V2(H) + ... + Vr(H), 
so 

Dr(H) - Dr_l(H) = Vr(H) = (b - l)Gr. 

From this, it follows that Er = Gr for all r > 1, so H = G. Q.E.D. 

We now illustrate these two theorems with two examples. For b - t = 2, we 
have the "ordinary" Zeckendorf Theorem and its dual, and the appropriate se-
quence G is the sequence of distinct Fibonacci numbers: 

{1, 2, 3, 5, 8, ...} = (Fk+l)l=±. 

For b = 3, t = 2, 

G = {1, 3, 8, 22, 60, ...} 

and we have the following representations: 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

S(G(3, 2)) 

1 
2 
10 
11 
12 
20 
21 
100 
101 
102 
110 
111 
112 
120 
121 
200 
201 
202 
210 
211 
212 
1000 
1001 
1002 

W ( 3 , 2)) 

1 
2 
10 
11 
12 
20 
21 
22 
101 
102 
110 
111 
112 
120 
121 
122 
201 
202 
210 
211 
212 
220 
221 
222 

n 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

S(G(3, 2)) 

1010 
1011 
1012 
1020 
1021 
1100 
1101 
1102 
1110 
1111 
1112 
1120 
1121 
1200 
1201 
1202 
1210 
1211 
1212 
2000 
2001 
2002 
2010 
2011 

T(G(3, 2)) 

1010 
1011 
1012 
1020 
1021 
1022 
1101 
1102 
1110 
1111 
1112 
1120 
1121 
1122 
1201 
1202 
1210 
1211 
1212 
1220 
1221 
1222 
2010 
2011 etc 
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For b = 2, t = 3, 

G = {1, 2, 4, 7, 13, 24, 44, ...}, 

which is the sequence of distinct Tribonacci numbers, and we have the follow-
ing representations: 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

S(G(2, 3)) 

1 
10 
11 
100 
101 
110 
1000 
1001 
1010 
1011 
1100 
1101 
10000 
10001 
10010 
10011 
10100 
10101 
10110 
11000 
11001 
11010 
11011 
100000 
100001 

T(G(2, 3)) 

1 
10 
11 
100 
101 
110 
111 
1001 
1010 
1011 
1100 
1101 
1110 
1111 
10010 
10011 
10100 
10101 
10110 
10111 
11001 
11010 
11011 
11100 
11101 

n 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

S(G(2, 3)) 

100010 
100011 
100100 
100101 
100110 
101000 
101001 
101010 
101011 
101100 
101101 
110000 
110001 
110010 
110011 
110100 
110101 
110110 
1000000 
1000001 
1000010 
1000011 
1000100 
1000101 
1000110 

T{G{2, 3)) 

11110 
11111 
100100 
100101 
100110 
100111 
101001 
101010 
101011 
101100 
101101 
101110 
101111 
110010 
110011 
110100 
110101 
110110 
110111 
111001 
111010 
111011 
111100 
111101 
111110 

It is of interest to indicate a generating function for the Gn(b9 t)!s, 
namely: 

F(z; b, t) = + Z = £ Gn(b, t)zn. (32) 
l - (b - l)(z + z1 + ••• + zt) «-i 

This may be verified by multiplying each side of the last equation by the de-
nominator of the fraction, then applying the relations in (11) and (12) 
defining Gn(b, t). By multinomial expansion, we may derive the following 
explicit expression for Gn(b, t) from (32): 

Gnib, t) = t (b - I)"-1 E (Xi. + "'• +
r

X * ) ' 03) 

where S is the set of t-ples of nonnegative integers x-,, x2, . . . , xt satisfying 

x^ + x^ + . . . + xt = 777, x-, + 2x2 + • • • + txt = n. 

We may also show the following result, expressed as a divided difference: 

Gn(b, t) = (b - l)~l A t ~ 1 ^ n + t-1(^li z2, ..., zt), (34) 

where z-^, z2, ..., zt are the (distinct) roots of the equation: 
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p(z) = p(z; b, t) = zt - (b - l)(st_1 + st_ 2 + ..- + 1) = 0. (35) 

This may be simplified to the following sum: 

Gn(b, t) = (b - l)"1 E ^ + t - 1 / p ' O k ) . (36) 
k = l 

An alternative expression, in terms of a contour integral, is given by: 

Gn(b, t) - (t-D-l^^^ld,, (37) 

where (7 is any simple closed contour in the complex plane, with posi-
tive direction and surrounding z,, z2> ..., zt within its interior. 

Other expressions may be derived which can be shown to be equivalent, namely: 

n (h - 1^ m~1 Jn-m 
(38) 

3 = 0 

and 

Gn(b, t) - E (b - l)m-l "'"£'"" {-DH^M* ~ l ~ kt). (39) 

Undoubtedly, further analysis of such relations should lead to additional 
interesting results. 
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