TRAPPING A REAL NUMBER BETWEEN ADJACENT RATIONALS

Harry D'Souza

University of Michigan, Flint, MI 48502-2186 (Submitted September 1987)

Introduction

In this article we ask the following question: Given any real number σ can one find a rational number p/q such that $(p + 1)/(q + 1) < \sigma < p/q$? Clearly, one of the necessary conditions of this problem is that $\sigma > 1$. But this condition is not sufficient. Interestingly enough, the question came up as a result in algebraic geometry in [2], where Sommese essentially proves the sufficiency of $\sigma > 2$ in the first theorem.

We give explicit conditions under which the above question is true using a somewhat stronger hypothesis: Given any real number $\sigma > 1$ and N > 0, can one find positive integers r and s such that r > s > N, and s divisible by some fixed integer m, and the denominator of a *fixed* rational number t and satisfying r - ts > M, for any M, where

$$1 < t < \sigma$$
 and $\frac{r+1}{s+1} < \sigma < \frac{r}{s}$?

The answer depends on whether $\boldsymbol{\sigma}$ is rational or irrational. We have the following two theorems:

Theorem 1: Let $\sigma = p/q$ be a positive rational number. Then the following are equivalent:

i) $\sigma > 2$

ii) Given any positive integers m, M, N and a rational number t = a/b such that $0 < t < \sigma$, then one can find r and s such that r > s > N, s is divisible by mb, and

$$r - ts > M$$
 and $\frac{r+1}{s+1} < \sigma < \frac{r}{s}$.

Proof: First we prove that ii) \Rightarrow i). Since *mb* divides *s*, write *s* = *nmb*, where *n* is a positive integer. Since r - ts > M, we must have r = ts + M + u for some integer $u \ge 1$. Hence, r = nma + M + u. Thus,

$$\frac{p}{q} > \frac{r+1}{s+1} \Rightarrow p(s+1) > q(r+1)$$
$$\Rightarrow sp + p - q > qr$$
$$nmbp + p - q > qrma + qM + qu$$
$$\Rightarrow p - q(u+1) > qnma - nmbp + qM$$
$$\Rightarrow \frac{p - q(u+1)}{nab} > m\left(\frac{a}{b} - \frac{p}{q}\right) + \frac{M}{nb}.$$

Now choose $\ensuremath{\mathit{M}}$ sufficiently large so that

 $m\left(\frac{a}{b} - \frac{p}{q}\right) + \frac{M}{nb} \ge 0.$

1989]

369

Hence, we conclude that

$$\frac{p-q(u+1)}{nqb} > 0.$$

Thus, p > q(u + 1), from which it follows that

 $\sigma = \frac{p}{q} > 2.$

Next we show that i) \Rightarrow ii). Let r = np + 1, s = nq. Choose n = kmb. Then $r - ts = n(p - tq) + 1 \rightarrow \infty$, as $k \rightarrow \infty$, since p - tq > 0. It is also easily seen that

$$\sigma > 2 \Longrightarrow \frac{r+1}{s+1} < \sigma. \square$$

Before discussing the next theorem, we need a few results.

Let
$$a_0 + \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$
 denote a continued fraction.
Let $a_0 + \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} = \frac{p_n}{q_n}$, then $p_n = Q(a_0, a_1, \dots, a_n)$.

Unlike [1], we use $Q(a_0, a_1, \ldots, a_n)$ to denote Euler continuants, where each of p_n and q_n are expanded using Euler's rule ([1], p. 82). Also well known is that (see [1], p. 83),

$$Q(a_0, \dots, a_n) = a_0 Q(a_1, \dots, a_n) + Q(a_2, \dots, a_n).$$
(*)

Remark 1: By Euler's rule, as $n \neq \infty$, $p_n \neq \infty$, $q_n \neq \infty$, and $Q(a_2, \ldots, a_n) \neq \infty$.

$$p_n - q_n = (a_0 - 1)q_n + Q(a_2, \dots, a_n)$$
, by (*).

We also know (see [1], p. 84) that

$$p_n q_{n-1} - p_{n-1} q_n = (-1)^{n-1}.$$
(**)

Let $\boldsymbol{\alpha}$ be an irrational number.

Let
$$a_0 + \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} + \frac{1}{a_{n+1}} = \alpha$$
.

Then $\alpha_{n+1} > 1$, and is irrational. Moreover (see [1], p. 89),

$$\alpha = \frac{\alpha_{n+1}p_n + p_{n-1}}{\alpha_{n+1}q_n + q_{n-1}}.$$

And, by (**), it follows that, if n is even, then

$$\frac{p_n}{q_n} < \alpha < \frac{p_{n-1}}{q_{n-1}}.$$

This brings us to Theorem 2.

Theorem 2: Suppose that σ is irrational, and $\sigma > 1$. Let $t = \alpha/b$ be a fixed rational number and *m* a fixed positive integer. Given any N > 0, one can find positive integers *r* and *s*, with r > s > N, *s* is divisible by *mb*, satisfying r - ts > M, for any given *M*, where

$$0 < t < \frac{r+1}{s+1} < \sigma < \frac{r}{s}.$$

Proof: Let σ have a continued fraction representation as α above. By (***), we see that, for *n* even,

370

[Aug.

(***)

$$\frac{p_n}{q_n} < \alpha < \frac{p_{n-1}}{q_{n-1}}.$$
Let $r = mabMp_{n-1}$ and $s = mabMq_{n-1}$, then
$$r - ts = maM(bp_{n-1} - aq_{n-1}) > M, \text{ since } \frac{a}{b} < \sigma < \frac{p_{n-1}}{q_{n-1}}.$$

$$\frac{p_n}{q_n} - \frac{r+1}{s+1} = \frac{p_n - q_n - mabM}{(mabMq_{n-1} + 1)q_n} > 0 \text{ if } n >> 0, \text{ and } n \text{ is even.}$$

This follows from (**) and Remark 1 above, noting that m, a, b, and M are given and n is arbitrary. Also

$$br - as = mabM(bp_{n-1} - aq_{n-1}) > a - b.$$

The last inequality holds since $bp_{n-1} - aq_{n-1} \ge 1$ and ab > a - b; hence,

$$t < \frac{r+1}{s+1}.$$

This proves the theorem.

Example 1: The following example shows that if the conditions in part ii) of Theorem 1 are relaxed, then the implication is false. Let $\sigma = 8/5$, r = 5, and s = 3, then $6/4 < \sigma < 5/3$.

Example 2: If $\sigma = (n + 1)/n$, then it is easy to see that it is impossible to find r and s in Theorem 1, even under relaxed conditions. If $\sigma = p/q$, a careful examination of the proof shows that $p - q \ge 2$ is a necessary condition.

Remark 2: If $\sigma = 2$, then we can easily see that, for any r/s > 2, we must have $(r + 1)/(s + 1) \ge 2$. Hence, Theorem 1 fails in that case even in the relaxed form.

Acknowledgments

I would like to thank D. J. Lewis for many useful conversations. I also sincerely thank the referee for many suggestions that helped to improve the style of exposition.

References

- 1. Harold Davenport. The Higher Arithmetic. London: Hutchinson University Library, 1970.
- A. J. Sommese. "On the Adjunction Theoretic Structure of Projective Varieties; Proceedings of Conference in Gottingen, 1985. Springer Lecture Notes #1194.

1989]