TRAPPING A REAL NUMBER BETWEEN ADJACENT RATIONALS

Harry D'Souza

University of Michigan, Flint, MI 48502-2186
(Submitted September 1987)

Introduction

In this article we ask the following question: Given any real number σ can one find a rational number p / q such that $(p+1) /(q+1)<\sigma<p / q$. ? Clearly, one of the necessary conditions of this problem is that $\sigma>1$. But this condition is not sufficient. Interestingly enough, the question came up as a result in algebraic geometry in [2], where Sommese essentially proves the sufficiency of $\sigma>2$ in the first theorem.

We give explicit conditions under which the above question is true using a somewhat stronger hypothesis: Given any real number $\sigma>1$ and $N>0$, can one find positive integers r and s such that $r>s>N$, and s divisible by some fixed integer m, and the denominator of a fixed rational number t and satisfying r - ts $>M$, for any M, where

$$
1<t<\sigma \text { and } \frac{r+1}{s+1}<\sigma<\frac{r}{s} ?
$$

The answer depends on whether σ is rational or irrational. We have the following two theorems:

Theorem 1: Let $\sigma=p / q$ be a positive rational number. Then the following are equivalent:
i) $\sigma>2$
ii) Given any positive integers m, M, N and a rational number $t=a / b$ such that $0<t<\sigma$, then one can find r and s such that $r>s>N, s$ is divisible by $m b$, and

$$
r-t s>M \text { and } \frac{r+1}{s+1}<\sigma<\frac{r}{s} .
$$

Proof: First we prove that ii) \Rightarrow i). Since $m b$ divides s, write $s=n m b$, where n is a positive integer. Since $r-t s>M$, we must have $r=t s+M+u$ for some integer $u \geq 1$. Hence, $r=n m a+M+u$. Thus,

$$
\begin{aligned}
\frac{p}{q}>\frac{p+1}{s+1} \Rightarrow & p(s+1)>q(r+1) \\
\Rightarrow & s p+p-q>q r \\
& n m b p+p-q>q n m a+q M+q u \\
\Rightarrow & p-q(u+1)>q n m a-n m b p+q M \\
\Rightarrow & \frac{p-q(u+1)}{n q b}>m\left(\frac{a}{b}-\frac{p}{q}\right)+\frac{M}{n b} .
\end{aligned}
$$

Now choose M sufficiently large so that

$$
m\left(\frac{a}{b}-\frac{p}{q}\right)+\frac{M}{n b} \geq 0
$$

Hence, we conclude that

$$
\frac{p-q(u+1)}{n q b}>0
$$

Thus, $p>q(u+1)$, from which it follows that

$$
\sigma=\frac{p}{q}>2
$$

Next we show that i) \Rightarrow ii). Let $r=n p+1, s=n q$. Choose $n=k m b$. Then $r-t s=n(p-t q)+1 \rightarrow \infty$, as $k \rightarrow \infty$, since $p-t q>0$. It is also easily seen that

$$
\sigma>2 \Rightarrow \frac{r+1}{s+1}<\sigma
$$

Before discussing the next theorem, we need a few results.
Let $a_{0}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}$ denote a continued fraction.
Let $a_{0}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}=\frac{p_{n}}{q_{n}}, \begin{aligned} \text { then } p_{n} & =Q\left(a_{0}, a_{1}, \ldots, a_{n}\right) \\ \text { and } q_{n} & =Q\left(a_{1}, \ldots, a_{n}\right) .\end{aligned}$
Unlike [1], we use $Q\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$ to denote Euler continuants, where each of p_{n} and q_{n} are expanded using Euler's rule ([1], p. 82). Also well known is that (see [1], p. 83),

$$
\begin{equation*}
Q\left(a_{0}, \ldots, a_{n}\right)=a_{0} Q\left(\alpha_{1}, \ldots, \alpha_{n}\right)+Q\left(\alpha_{2}, \ldots, \alpha_{n}\right) \tag{*}
\end{equation*}
$$

Remark 1: By Euler's rule, as $n \rightarrow \infty, p_{n} \rightarrow \infty, q_{n} \rightarrow \infty$, and $Q\left(\alpha_{2}, \ldots, \alpha_{n}\right) \rightarrow \infty$.

$$
p_{n}-q_{n}=\left(a_{0}-1\right) q_{n}+Q\left(a_{2}, \ldots, a_{n}\right), \text { by }(*)
$$

We also know (see [1], p. 84) that

$$
\begin{equation*}
p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n-1} \tag{**}
\end{equation*}
$$

Let α be an irrational number.
Let $a_{0}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}+\frac{1}{\alpha_{n+1}}=\alpha$.
Then $\alpha_{n+1}>1$, and is irrational. Moreover (see [1], p. 89),

$$
\alpha=\frac{\alpha_{n+1} p_{n}+p_{n-1}}{\alpha_{n+1} q_{n}+q_{n-1}}
$$

And, by (**), it follows that, if n is even, then

$$
\frac{p_{n}}{q_{n}}<\alpha<\frac{p_{n-1}}{q_{n-1}}
$$

This brings us to Theorem 2.

Theorem 2: Suppose that σ is irrational, and $\sigma>1$. Let $t=\alpha / b$ be a fixed rational number and m a fixed positive integer. Given any $N>0$, one can find positive integers r and s, with $r>s>N, s$ is divisible by $m b$, satisfying r - ts $>M$, for any given M, where

$$
0<t<\frac{r+1}{s+1}<\sigma<\frac{r}{s}
$$

Proof: Let σ have a continued fraction representation as α above. By (***), we see that, for n even,

$$
\frac{p_{n}}{q_{n}}<\alpha<\frac{p_{n-1}}{q_{n-1}} .
$$

Let $r=\operatorname{mabMp}_{n-1}$ and $s=m a b M q_{n-1}$, then

$$
\begin{aligned}
& r-t s=\operatorname{maM}\left(b p_{n-1}-a q_{n-1}\right)>M, \text { since } \frac{a}{b}<\sigma<\frac{p_{n-1}}{q_{n-1}} \\
& \frac{p_{n}}{q_{n}}-\frac{r+1}{s+1}=\frac{p_{n}-q_{n}-m a b M}{\left(m a b M q_{n-1}+1\right) q_{n}}>0 \text { if } n \gg 0 \text {, and } n \text { is even. }
\end{aligned}
$$

This follows from (**) and Remark 1 above, noting that m, a, b, and M are given and n is arbitrary. Also

$$
b r-a s=\operatorname{mabM}\left(b p_{n-1}-a q_{n-1}\right)>a-b
$$

The last inequality holds since $b p_{n-1}-\alpha q_{n-1} \geq 1$ and $a b>a-b$; hence,

$$
t<\frac{r+1}{s+1} .
$$

This proves the theorem.
Example 1: The following example shows that if the conditions in part ii) of Theorem 1 are relaxed, then the implication is false. Let $\sigma=8 / 5, r=5$, and $s=3$, then $6 / 4<\sigma<5 / 3$.

Example 2: If $\sigma=(n+1) / n$, then it is easy to see that it is impossible to find r and s in Theorem 1 , even under relaxed conditions. If $\sigma=p / q$, a careful examination of the proof shows that $p-q \geq 2$ is a necessary condition.

Remark 2: If $\sigma=2$, then we can easily see that, for any $r / s>2$, we must have $(r+1) /(s+1) \geq 2$. Hence, Theorem 1 fails in that case even in the relaxed form.

Acknowledgments

I would like to thank D. J. Lewis for many useful conversations. I also sincerely thank the referee for many suggestions that helped to improve the style of exposition.

References

1. Harold Davenport. The Higher Arithmetic. London: Hutchinson University Library, 1970.
2. A. J. Sommese. "On the Adjunction Theoretic Structure of Projective Varieties; Proceedings of Conference in Gottingen, 1985. Springer Lecture Notes \#1194.

$* * * * *$

