ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. Hillman

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy
and

$$
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1
$$

,

$$
L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1 .
$$

PROBLEMS PROPOSED IN THIS ISSUE

B-646 Proposed by A. P. Hillman in memory of Gloria C. Padilla
We know that $F_{2 n}=F_{n} L_{n}=F_{n}\left(F_{n-1}+F_{n+1}\right)$. Find m as a function of n so as to have the analogous formula $T_{m}=T_{n}\left(T_{n-1}+T_{n+1}\right)$, where T_{n} is the triangular number $n(n+1) / 2$.

B-647 Proposed by L. Kuipers, Serre, Switzerland
Simplify

$$
\left[L_{2 n}+7(-1)^{n}\right]\left[L_{3 n+3}-2(-1)^{n} L_{n}\right]-3(-1)^{n} L_{n-2} L_{n+2}^{2}-L_{n-2} L_{n-1} L_{n+2}^{3}
$$

B-648 Proposed by M. Wachtel, Zurich, Switzerland
The Pell numbers P_{n} and Q_{n} are defined by

$$
P_{n+2}=2 P_{n+1}+P_{n}, P_{0}=0, P_{1}=1 ; Q_{n+2}=2 Q_{n+1}+Q_{n}, \quad Q_{0}=1=Q_{1} .
$$

Show that $\left(P_{4 n}, P_{2 n}^{2}+1,3 P_{2 n}^{2}+1\right)$ is a primitive Pythagorean triple for n in $\{1,2, \ldots\}$.

B-649 Proposed by M. Wachtel, Zurich, Switzerland

Give a rule for constructing a sequence of primitive Pythagorean triples (a_{n}, b_{n}, c_{n}) whose first few triples are in the table

n	1	2	3	4	5	6	7	8
a_{n}	24	28	88	224	572	1248	3276	7332
b_{n}	7	45	105	207	555	1265	3293	7315
c_{n}	25	53	137	305	797	1777	4645	10357

and which satisfy

$$
\left|a_{n}-b_{n}\right|=17
$$

$$
a_{2 n-1}+a_{2 n}=26 P_{2 n}=b_{2 n-1}+b_{2 n}
$$

and $\quad c_{2 n-1}+c_{2 n}=26 Q_{2 n}$.
[P_{n} and Q_{n} are the Pell numbers of B-648.]
B-650 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome Italy \& David Singmaster, Polytechnic of the South Bank, London, UK

Let us introduce a pair of 1 -month-old rabbits into an enclosure on the first day of a certain month. At the end of one month, rabbits are mature and each pair produces $k-1$ pairs of offspring. Thus, at the beginning of the second month there is 1 pair of 2 -month-old rabbits and $k-1$ pairs of 0 -montholds. At the beginning of the third month, there is 1 pair of 3 -month-olds, $k-1$ pairs of 1 -month-olds, and $k(k-1)$ pairs of 0 -month-olds. Assuming that the rabbits are immortal, what is their average age A_{n} at the end of the $n^{\text {th }}$ month? Specialize to the first few values of k. What happens as $n \rightarrow \infty$?

B-651 Proposed by L. Van Hamme, Vrije Universiteit, Brussels, Belgium
Let u_{0}, u_{1}, \ldots be defined by $u_{0}=0, u_{1}=1$, and $u_{n+2}=u_{n+1}-u_{n}$. Also let p be a prime greater than 3 , and for n in $X=\{1,2, \ldots, p-1\}$, let n^{-1} denote the v in X with $n v \equiv 1(\bmod p)$. Prove that

$$
\sum_{n=1}^{p-1}\left(n^{-1} u_{n+k}\right) \equiv 0(\bmod p)
$$

for all nonnegative integers k.

SOLUTIONS

Relationship between Variables

B-622 Proposed by Philip L. Mana, Albuquerque, NM
For fixed n, find all m such that $L_{n} F_{m}-F_{m+n}=(-1)^{n}$.
Solution by Piero Filipponi, Fond. U. Bordoni, Rome, Italy
Using the Binet forms for L_{n} and F_{m}, after some simple manipulations, it can be shown that

$$
S_{n, m}=L_{n} F_{m}-F_{m+n}=(-1)^{n} F_{m-n} .
$$

It follows that $S_{n, m}=(-1)^{n}$ iff $E_{m-n}=1$, that is $m=n-1, n+1, n+2$.

Also solved by Paul S. Bruckman, Herta T. Freitag, C. Georghiou, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, Amitabha Tripathi, and the proposer.

Multiple of L_{n}

B-623 Proposed by Herta T. Freitag, Roanoke, VA
Let

$$
S(n)=\sum_{k=1}^{2 n-1} L_{n+k} L_{k} .
$$

Prove that $S(n)$ is an integral multiple of L_{n} for all positive integers n.
Solution by Sahib Singh, Clarion Univ. of Pennsylvania, Clarion, PA
Using the Binet form, $L_{n+k} L_{k}=L_{n+2 k}+(-1)^{k} L_{n}$. Thus,

$$
\begin{aligned}
\sum_{k=1}^{2 n-1} L_{n+k} L_{k} & =\left(L_{n+2}+L_{n+4}+\cdots+L_{5 n-2}\right)-L_{n} \\
& =L_{5 n-1}-L_{n+1}-L_{n} \\
& =L_{5 n-1}-L_{n-1}-2 L_{n} .
\end{aligned}
$$

Since $L_{5 n-1}-L_{n-1}=5 F_{2 n} F_{3 n-1}=5 L_{n} F_{n} F_{3 n-1}, S(n) \equiv 0\left(\bmod L_{n}\right)$ is true.
Also solved by Paul S. Bruckman, Piero Filipponi, C. Georghiou, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Lawrence Somer, Amitabha Tripathi, and the proposer.

$$
\text { Multiple of } F_{n}^{2} \text { or } L_{n}^{2}
$$

B-624 Proposed by Herta T. Freitag, Roanoke, VA
Let

$$
T_{n}=\sum_{i=1}^{n} L_{2(n+i)-1} .
$$

For every positive integer n, prove that either $F_{n} \mid T_{n}$ or $L_{n} \mid T_{n}$.
Solution by Lawrence Somer, Washington, D.C.
We will prove the stronger result that either $F_{n}^{2} \mid T_{n}$ or $L_{n}^{2} \mid T_{n}$. By the solution to Problem B-605 on page 374 of the November 1988 issue of The Fibonacci Quarterly,

$$
T_{n}=\left(L_{2 n}-2\right)\left(L_{2 n}+1\right) .
$$

We will show that either $F_{n} \mid\left(L_{2 n}-2\right)$ or $L_{n} \mid\left(L_{2 n}-2\right)$. The result will then follow.

It is well known that

$$
\begin{equation*}
L_{2 n}=L_{n}^{2}-2(-1)^{n} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n} \tag{2}
\end{equation*}
$$

First, suppose that n is even. Then, by (1) and (2),

$$
L_{2 n}-2=L_{n}^{2}-4=5 F_{n}^{2} .
$$

Thus, $F_{n}^{2} \mid\left(L_{n}-2\right)$ if n is even.

Now, suppose that n is odd. Then, by (1),

$$
L_{2 n}-2=\left(L_{n}^{2}+2\right)-2=L_{n}^{2}
$$

and $L_{n}^{2} \mid\left(L_{2 n}-2\right)$ Q.E.D.
Also solved by Paul S. Bruckman, Piero Filipponi, C. Georghiou, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Amitabha Tripathi, and the proposer.

$$
\underline{\text { Recurrences for } F_{n} P_{n} \text { and } L_{n} P_{n}}
$$

B-625 Proposed by H.-J. Seiffert, Berlin, Germany
Let P_{0}, P_{1}, \ldots be the Pell numbers defined by
$P_{0}=0, P_{1}=1, P_{n}=2 P_{n-1}+P_{n-2}$ for $n \geq 2$.
Let $G_{n}=F_{n} P_{n}$ and $H_{n}=L_{n} P_{n}$. Show that $\left(G_{n}\right)$ and (H_{n}) satisfy $K_{n+4}-2 K_{n+3}-7 K_{n+2}-2 K_{n+1}+K_{n}=0$.

Solution by Amitabha Tripathi, SUNY, Buffalo, NY
Let us consider two second-order linear recurrence relations given by

$$
x_{n+2}=a x_{n+1}+b x_{n}, \quad y_{n+2}=c y_{n+1}+d y_{n}, \quad n \geq 0,
$$

with a, b, c, and d complex numbers with at least one of a, c nonzero. Then the sequence $\left\{z_{n}\right\}=\left\{x_{n} y_{n}\right\}, n \geq 0$, is also a linearly recurrent sequence of order at most four. In fact, for $n \geq 0$, we have

$$
\begin{aligned}
z_{n+4}= & x_{n+4} y_{n+4}=\left(a x_{n+3}+b x_{n+2}\right)\left(c y_{n+3}+d y_{n+2}\right) \\
= & a c z_{n+3}+b d z_{n+2}+a d y_{n+2}\left(a x_{n+2}+b x_{n+1}\right)+b c x_{n+2}\left(c y_{n+2}+d y_{n+1}\right) \\
= & a c z_{n+3}+\left(b d+a^{2} d+b c^{2}\right) z_{n+2}+a b d x_{n+1}\left(c y_{n+1}+d y_{n}\right) \\
& +b c d x_{n+2} \frac{y_{n+2}-d y_{n}}{c} \\
= & a c z_{n+3}+\left(a^{2} d+2 b d+b c^{2}\right) z_{n+2}+a b c d z_{n+1}-b d^{2} y_{n}\left(x_{n+2}-a x_{n+1}\right) \\
= & a c z_{n+3}+\left(a^{2} d+2 b d+b c^{2}\right) z_{n+2}+a b c d z_{n+1}-b^{2} d^{2} z_{n}
\end{aligned}
$$

The result now follows with $a=b=d=1, c=2$ for each of the sequences $\left\{G_{n}\right\}$ and $\left\{H_{n}\right\}$ 。

Also solved by Paul S. Bruckman, Odoardo Brugia \& Piero Filipponi, C. Georghiou, L. Kuipers, Y. H. Harris Kwong, Bob Prielipp, Sahib Singh, and the proposer.

$$
\text { Generating Functions for } F_{n} P_{n} \text { and } L_{n} P_{n}
$$

B-626 Proposed by H.-J. Seiffert, Berlin, Germany
Let G_{n} and H_{n} be as in B-625. Express the generating functions

$$
G(z)=\sum_{n=0}^{\infty} G_{n} z^{n} \quad \text { and } \quad H(z)=\sum_{n=0}^{\infty} H_{n} z^{n}
$$

as rational functions of z.

Solution by Amitabha Tripathi, SUNY, Buffalo, NY
It is well known (and follows easily from a Binet-type formula for the nth term of a linearly recurrent sequence) that, if

$$
f_{n+k}+a_{1} f_{n+k-1}+a_{2} f_{n+k-2}+\cdots+a_{k} f_{n}=0
$$

then the denominator of the rational expression for the generating function for the sequence f_{n} is given by the polynomial $\left(1+a_{1} z+\alpha_{2} z^{2}+\ldots+a_{k} z^{k}\right)$. Thus,

$$
\begin{aligned}
& \left(1-2 z-7 z^{2}-2 z^{3}+z^{4}\right) K(z) \\
& =K_{0}+\left(K_{1}-2 K_{0}\right) z+\left(K_{2}-2 K_{1}-7 K_{0}\right) z^{2}+\left(K_{3}-2 K_{2}-7 K_{1}-2 K_{0}\right) z^{3}
\end{aligned}
$$

where $K_{n+4}-2 K_{n+3}-7 K_{n+2}-2 K_{n+1}+K_{n}=0(n \geq 0)$. Hence,

$$
G(z)=\frac{z-z^{3}}{1-2 z-7 z^{2}-2 z^{3}+z^{4}} \quad \text { and } \quad H(z)=\frac{z+4 z^{2}+z^{3}}{1-2 z-7 z^{2}-2 z^{3}+z^{4}} .
$$

Also solved by Paul S. Bruckman, Odoardo Brogia \& Piero Filipponi, C. Georghiou, L. Kuipers, Y. H. Harris Kwong, Sahib Singh, and the proposer.

Integral Mean of Consecutive Cubes

B-627 Proposed by Piero Filipponi, Fond U. Bordoni, Rome, Italy
Let

$$
C_{n, k}=\left(F_{n}^{3}+F_{n+1}^{3}+\cdots+F_{n+k-1}^{3}\right) / k
$$

Find the smallest k in $\{2,3,4, \ldots\}$ such that $C_{n, k}$ is an integer for every n in $\{0,1,2, \ldots\}$.

Solution by C. Georghiou, University of Patras, Greece
We find that

$$
C_{n, k}=\left[F_{3 n+3 k-1}-F_{3 n-1}+6(-1)^{n+k} F_{n+k-2}-6(-1)^{n} F_{n-2}\right] / 10 k
$$

Those k in $\{2,3,4, \ldots, 24\}$ such that $k \mid C_{0, k}$ are in the set $\{6,9,11,19$, 24\}. The only k in the last set such that $k \mid C_{1, k}$ is $k=24$. Therefore, the required smallest k is $k \geq 24$. From

$$
C_{n+1, k}=C_{n, k}+\left(F_{n+k}^{3}-F_{n}^{3}\right) / k,
$$

we get

$$
\begin{aligned}
C_{n+1,24} & =C_{n, 24}+\left(F_{n+24}^{3}-F_{n}^{3}\right) / 24 \\
& =C_{n, 24}+\left(F_{n+24}^{2}+F_{n+24} F_{n}+F_{n}^{2}\right)\left(F_{n+24}-F_{n}\right) / 24 \\
& =C_{n, 24}+6 L_{n+12}\left(F_{n+24}^{2}+F_{n+24} F_{n}+F_{n}^{2}\right),
\end{aligned}
$$

from which it follows that the answer to the problem is $k=24$.
Also solved by Paul S. Bruckman, L. Kuipers, Bob Prielipp, Sahib Singh, Amitabha Tripathi, and the proposer.

