TWO-SIDED GENERALIZED FIBONACCI SEQUENCES

Peter C. Fishburn
Andrew M. Odlyzko
AT\&T Bell Laboratories, Murray Hill, NJ 07974

Fred S. Roberts
Rutgers University, New Brunswick, NJ 08903
(Submitted August 1987)

1. Introduction

This paper investigates a concept called a two-sided generalized Fibonacci sequence (TGF) that was motivated by problems of uniqueness in measurement representations [2-4, 6-8]. The particular context that gives rise to TGFs is finite algebraic difference measurement [2, 6-8]. For simplicity, suppose that $n+1$ objects a_{1}, \ldots, a_{n+1} are linearly ordered by a real-valued function u as

$$
u\left(a_{1}\right)<u\left(a_{2}\right)<\cdots<u\left(a_{n+1}\right)
$$

and that comparisons can be made between positive differences $u\left(\alpha_{j}\right)-u\left(\alpha_{i}\right)$, $i<j$. In measurement theory, we are sometimes concerned with conditions which guarantee that the u values are unique up to a positive affine transformation

$$
u \rightarrow \alpha u+\beta, \alpha>0 .
$$

Let $\alpha_{i}>0$ be defined by

$$
d_{i}=u\left(\alpha_{i+1}\right)-u\left(\alpha_{i}\right) .
$$

Then we search for conditions which guarantee that the d_{i} are unique up to multiplication by a positive constant α. Each equality-of-differences comparison yields an equation of the form

$$
d_{i}+d_{i+1}+\cdots+d_{j}=d_{k}+d_{k+1}+\cdots+d_{\ell}, 1 \leq i \leq j<k \leq \ell \leq n,
$$

in the variables d_{i}. If there are $n-1$ linearly independent equations of this type that have a strictly positive solution, then their solution by positive d_{i} is unique up to multiplication of every d_{i} by the same positive constant. For example, the three equations

$$
d_{1}=d_{2}, \quad d_{2}+d_{3}=d_{4}, \quad d_{1}+d_{2}=d_{3}+d_{4}
$$

have solution $d_{1}^{*} \ldots d_{4}^{*}=2213$, and if $d_{1}^{\prime} \ldots d_{4}^{\prime}$ is any other positive solution then there is a $\lambda>0$ such that $d_{i}^{\prime}=\lambda d_{i}^{*}$ for each i. We refer the interested readers to [2] for additional discussion of this type of uniqueness in the general algebraic difference setting.

A $T G F$ is a finite sequence of positive integers constructed by starting with a 1 and adding terms one by one at either end of the sequence S constructed thus far so that each new term equals the sum of one or more contiguous terms on the end of S at which the new term is placed. A new term v added to $S=x_{1} \ldots x_{m}$ produces either $v x_{1} \ldots x_{m}$ with

$$
v \in\left\{x_{1}, x_{1}+x_{2}, \ldots, x_{1}+\cdots+x_{m}\right\}
$$

or $x_{1} \ldots x_{m} v$ with

$$
v \in\left\{x_{m}, x_{m}+x_{m-1}, \ldots, x_{m}+\ldots+x_{1}\right\}
$$

TGFs arise from specialized sets of equations of the type described in the preceding paragraph. One example for $n=4$ is 2114 , which is the unique positive solution (up to multiplication by a positive constant) to

$$
d_{2}=d_{3}, \quad d_{1}=d_{2}+d_{3}, \quad d_{4}=d_{1}+d_{2}+d_{3}
$$

Although many unique solutions to equations for the general algebraic difference setting do not correspond to TGFs, as is true for

$$
d_{1}^{*} \ldots d_{4}^{*}=2213
$$

two-sided generalized Fibonacci sequences constitute an important subset of all such unique solutions, and it is this subset that we study here.

Let T_{n} denote the set of all n-term TGFs, and let $t_{n}=\left|T_{n}\right|$. Then
$T_{1}=\{1\}, \quad T_{2}=\{(1,1)\}=\{11\}, \quad T_{3}=\{111,112,211\}$,
$T_{4}=\{1111,1112,1113,1122,1123,1124,2111$,
2112, 2114, 2211, 3111, 3211, 4112, 4211\},
and so forth, with $t_{1}=t_{2}=1, t_{3}=3, t_{4}=14$, and, as we shall see, $t_{5}=85$, $t_{6}=626, \ldots$. We note that every TGF for $n \geq 2$ has the monotonicity property, which means that there is a subsequence of two or more contiguous 1^{\prime} 's and the sequence is nondecreasing in both directions away from that subsequence. Given any finite integer sequence

$$
b_{j} \ldots b_{2} b_{1} 1 \ldots l a_{1} a_{2} \ldots a_{k}
$$

with the monotonicity property, a simple outside-in algorithm identifies whether it is a TGF. At each step of the algorithm, we ask whether a largest end term is the sum of a contiguous block of terms next to it. If not, the sequence is not a TGF; else delete that end term and repeat the question. If deletions leave only l's, the sequence is a TGF.

We close this section by summarizing our main results. Our first main counting result is the nonlinear recurrence

$$
t_{n+1}=2 n t_{n}-(n-1)^{2} t_{n-1} \text { for } n \geq 2
$$

which has the Fibonacci feature that each new term in

$$
\left(t_{1}, t_{2}, \ldots\right)=(1,1, \ldots)
$$

is determined from its two immediate predecessors. Since the t_{n} sequence is not in Sloane's book [10] and has not been brought to that author's attention by others (N. J. A. Sloane, personal communication), it may not have been studied previously.

The recurrence implies that

$$
(\sqrt{n}+1 / 2)^{2}-1 / \sqrt{n}<\frac{t_{n+1}}{t_{n}}<(\sqrt{n}+1 / 2)^{2} \text { for } n \geq 2
$$

This gives nice bounds on the ratio of successive t_{n} and indicates the growth rate of the t_{n} sequence. We omit the proof of these bounds, which follow without great difficulty from the recurrence by induction, algebraic manipulation, and subsidiary inequalities such as

$$
1 / 2<\sqrt{n}(\sqrt{n}-\sqrt{n-1})
$$

Our other main result for t_{n} is an asymptotic estimate obtained from the exponential generating function

$$
F(x)=\sum_{n=1}^{\infty} \frac{t_{n} x^{n-1}}{(n-1)!}
$$

We prove that

$$
F(x)=\frac{e^{\frac{1}{1-x}}}{1-x}\left[\frac{1}{e}-\int_{y=0}^{x} \frac{e^{-\frac{1}{1-y}}}{1-y} d y\right]
$$

and use this to obtain

$$
t_{n} \sim K(n-1)!e^{2 \sqrt{n}} / n^{1 / 4}
$$

where $K=K_{1} \sqrt{e / \pi} / 2$ and

$$
K_{1}=\frac{1}{e}-\int_{y=0}^{1} \frac{e^{-\frac{1}{1-y}}}{1-y} d y=0.148495 \ldots
$$

The ratios of successive values of this approximation of t_{n} lie well within the bounds of the preceding paragraph. The generating function can also be used to obtain a fuller asymptotic approximation to t_{n}.

The results for t_{n} are proved in the next section. Section 3 examines $f\left(k_{1}, \ldots, k_{m}\right)$, the length of a shortest TGF that contains at least one permutation of the positive integer sequence (k_{1}, \ldots, k_{m}) as a (not necessarily contiguous) subsequence. We note first that $f\left(k_{1}, \ldots, k_{m}\right)$ is always defined for $m \leq 4$ but can be undefined for $m \geq 5$ because no TGF has a permutation of k_{1}, \ldots, k_{m} as a subsequence. We then show for a single integer $k \geq 2$ that

$$
f(k)=\left\lceil\log _{2} k\right\rceil+2
$$

where $\lceil x\rceil$ is the smallest integer at least as great as x. This result is followed by a proof that, when $k_{1} \leq k_{2} \leq k_{3} \leq k_{4}, f\left(k_{1}, k_{2}, k_{3}, k_{4}\right)-f\left(k_{2}, k_{3}, k_{4}\right)$ can be arbitrarily large. We do not know whether the same thing holds for $f\left(k_{1}, k_{2}, k_{3}\right)-f\left(k_{2}, k_{3}\right)$ or for $f\left(k_{1}, k_{2}\right)-f\left(k_{2}\right)$ when $k_{1} \leq k_{2} \leq k_{3}$, but conjecture that $f\left(k_{1}, k_{2}\right) \leq f\left(k_{2}\right)+1$.

The paper concludes with remarks on open problems and generalizations.

2. Counting TGFs

Theorem 1: $t_{1}=1, t_{2}=1$, and $t_{n+1}=2 n t_{n}-(n-1)^{2} t_{n-1}$ for $n \geq 2$.
Proof: Each TGF $x_{1} \ldots x_{n}$ in T_{n} yields n left extensions $v x_{1} \ldots x_{n}$ in T_{n+1} for the n different values in

$$
\left\{x_{1}, x_{1}+x_{2}, \ldots, x_{1}+\ldots+x_{n}\right\}
$$

It also yields n right extensions $x_{1} x_{2} \ldots x_{n} v$ in T_{n+1} for the n different values in

$$
\left\{x_{n}, x_{n}+x_{n-1}, \ldots, x_{n}+\ldots+x_{1}\right\}
$$

Thus, T_{n} induces $n t_{n}$ distinct members of T_{n+1} by left extension and $n t_{n}$ distinct members of T_{n+1} by right extension. But the $2 n t_{n}$ total can contain duplications between left and right extensions.

Call a sequence in T_{n+1} a sequence of duplication if it arises from both a left extension and a right extension of sequences in T_{n}. Consider the condition

$$
\begin{align*}
& z_{2} \ldots z_{n} \in T_{n-1}, z_{1}=z_{2}+\cdots+z_{j} \text { for some } 2 \leq j \leq n, \tag{A}\\
& \text { and } z_{n+1}=z_{n}+\cdots+z_{k} \text { for some } 2 \leq k \leq n .
\end{align*}
$$

If (A) holds, then $z_{1} z_{2} \ldots z_{n} z_{n+1}$ is clearly a sequence of duplication, since $z_{1} \ldots z_{n}$ and $z_{2} \ldots z_{n+1}$ are in T_{n}.

Conversely, if $z_{1} \ldots z_{n+1}$ is a sequence of duplication, then (A) holds. To see this, suppose

$$
\begin{aligned}
& z_{1} \cdots z_{n+1}=a x_{1} \ldots x_{n}=y_{1} \cdots y_{n} b \\
\text { with } x_{1} & \cdots x_{n} \text { and } y_{1} \cdots y_{n} \text { in } T_{n}, \\
& a=x_{1}+\cdots+x_{j} \text { for some } 1 \leq j \leq n, \text { and } \\
b & =y_{n}+\cdots+y_{k} \text { for some } 1 \leq k \leq n .
\end{aligned}
$$

We cannot have $a=x_{1}+\ldots+x_{n}$, since otherwise $y_{1}>y_{2}+\ldots+y_{n}$, contradicting $y_{1} \ldots y_{n} \in T_{n}$. Similarly, b cannot equal $y_{n}+\ldots+y_{1}$. We can conclude that (A) holds for $z_{1}=\alpha$ and $z_{n+1}=b$, provided that we can show that $S=z_{2} \ldots z_{n}$ is in T_{n-1}. Suppose, to the contrary, that $S \notin T_{n-1}$. Then

$$
x_{k}=x_{k+1}+\cdots+x_{n} \text { for some } k \leq n-1
$$

If this is true only for $k=n-1$, then x_{n} can be the last term added in the construction of $x_{1} \ldots x_{n}$ so that its deletion leaves member $x_{1} \ldots x_{n-1}=S$ of T_{n-1}. Hence, we suppose that

$$
x_{k}=x_{k+1}+\cdots+x_{n} \text { for some } k \leq n-2
$$

By a symmetric argument for $y_{1} \ldots y_{n}, S \notin T_{n-1}$ implies that

$$
y_{j}=y_{1}+\cdots+y_{j-1} \text { for some } j \geq 3
$$

With k and j as just noted, $x_{k}=z_{k+1}, y_{j}=z_{j}$, and the monotonicity property for $z_{1} \ldots z_{n+1}$ requires that there be some l's to the left of z_{j} and some l^{\prime} 's to the right of z_{k+1}. Therefore, $k+1<j$. But then $z_{k+1}>z_{j}\left(x_{k}>y_{j}\right)$, since z_{k+1} is a sum of terms that include z_{j}, and $z_{j}>z_{k+1}\left(y_{j}>x_{k}\right)$, since z_{j} is a sum of terms that include z_{k+1}. We therefore have a contradiction and conclude that $S \in T_{n-1}$.

We have shown that (A) holds if and only if $z_{1} \ldots z_{n+1}$ is a sequence of duplication. Since for every member of T_{n-1} each of z_{1} and z_{n+1} can be chosen independently in $n-1$ ways to satisfy (A), there are precisely $(n-1)^{2} t_{n-1}$ sequences of duplication. Each of these corresponds to one left extension and one right extension from T_{n}. Therefore,

$$
t_{n+1}=2 n t_{n}-(n-1)^{2} t_{n-1}
$$

A simple application of Theorem 1 shows that

$$
\begin{aligned}
& t_{5}=85, t_{6}=626, t_{7}=5387, t_{8}=52,882, \\
& t_{9}=582,149, t_{10}=7,094,234, t_{11}=94,730,611, \ldots .
\end{aligned}
$$

Theorem 2: $t_{n} \sim(n-1)!K_{1} \sqrt{e / \pi} e^{2 \sqrt{n}} /\left(2 n^{1 / 4}\right)$, where

$$
K_{1}=\frac{1}{e}-\int_{y=0}^{1} \frac{e^{-\frac{1}{1-y}}}{1-y} d y=0.148495 \ldots .
$$

Proof: The proof is based on the saddle point method of asymptotic analysis described, for example, in de Bruijn [1]. As we note shortly, the main step in the proof is covered by results of Hayman [5].

We begin with the recurrence of Theorem 1 and form the exponential generating function

$$
F(x)=\sum_{n=1}^{\infty} \frac{t_{n} x^{n-1}}{(n-1)!}
$$

Using the recurrence, we get

$$
F^{\prime}(x)(1-x)^{2}-F(x)(2-x)=-1
$$

We solve this linear differential equation by a standard method to obtain

$$
F(x)=\frac{e^{\frac{1}{1-x}}}{1-x}\left[K_{1}+\int_{x}^{1} \frac{e^{-\frac{1}{1-y}}}{1-y} d y\right]
$$

where K_{1} is as defined in Theorem 2.
Ignoring $\int_{x}^{1} \ldots d y$ for the moment, we use the saddle point method to obtain the asymptotic estimate of the coefficient c_{n} of x^{n} in the power series expansion of $e^{1 /(1-x)} /(1-x)$. It follows from Hayman [5] (and by our independent verification) that

$$
c_{n} \sim \frac{1}{2} \sqrt{e / \pi} e^{2 \sqrt{n}} / n^{1 / 4}
$$

Since $c_{n} / c_{n-1} \rightarrow 1$ and (see below) $\int_{x}^{1} \ldots d y$ is insignificant compared to K_{1}, we conclude that

$$
t_{n} /(n-1)!\sim K_{1} \frac{1}{2} \sqrt{e / \pi} e^{2 \sqrt{n}} / n^{1 / 4}
$$

as claimed in Theorem 2.
To show that the $\int_{x}^{1} \ldots d y$ part of $F(x)$ can be ignored asymptotically, we first extend this part of $F(x)$ to the complex plane by defining

$$
g(z)=\frac{e^{\frac{1}{1-z}}}{1-z} \int_{z}^{1} \frac{e^{-\frac{1}{1-u}}}{1-u} d u=\frac{1}{1-z} \int_{z}^{1} \frac{e^{\frac{z-u}{(1-z)(1-u)}}}{1-u} d u=\sum_{n=0}^{\infty} d_{n} z^{n}
$$

By Cauchy's integral equation,

$$
d_{n}=\frac{1}{2 \pi i} \oint_{|z|=r} \frac{g(z)}{z^{n}} \frac{d z}{z}
$$

and therefore,

$$
\left|d_{n}\right| \leq \frac{\max |g(z)|}{|z|^{n}}=\frac{\max |g(z)|}{r^{n}}
$$

where $r=1-1 / \sqrt{n}$ and the max is taken on the circle $|z|=r$. We shall show that

$$
|g(z)|=O(\sqrt{n}) \text { for all } z \text { with }|z|=r
$$

It then follows that

$$
\left|d_{n}\right|=O\left(\sqrt{n} e^{\sqrt{n}}\right)
$$

and hence that

$$
\frac{\left|d_{n}\right|}{K_{1} c_{n}}=O\left(n^{3 / 4} / e^{\sqrt{n}}\right) \rightarrow 0
$$

Therefore, the total coefficient of x^{n} in the power series expansion of $F(x)$ is $\sim K_{1} c_{n}$.

To obtain

$$
|g(z)|=O(\sqrt{n}) \text { on }|z|=r,
$$

we begin with the second integral expression of $g(z)$ in the preceding paragraph and define α by

$$
u=1-\alpha(1-z)
$$

to obtain

$$
g(z)=\frac{1}{1-z} \int_{\alpha=0}^{1} e^{(1-1 / \alpha) /(1-z)} \frac{d \alpha}{\alpha}
$$

Since $\operatorname{Re}(1 /(1-z))=(1-\operatorname{Re}(z)) /|1-z|^{2}$ and $1-1 / \alpha<0$, this yields

$$
|g(z)| \leq \frac{1}{|1-z|} \int_{\alpha=0}^{1} e^{(1-1 / \alpha)(1-\operatorname{Re}(z)) /|1-z|^{2}} \frac{d \alpha}{\alpha}
$$

With $z=r(\cos \theta+i \sin \theta)$ in polar coordinates,

$$
|1-z|=\left(1-2 r \cos \theta+r^{2}\right)^{1 / 2}
$$

This is minimized at $\theta=0$, so

$$
\min |1-z|=1-r=1 / \sqrt{n}
$$

Therefore,

$$
\max (1 /|1-z|)=\sqrt{n}
$$

Moreover, $\operatorname{Re}(1 /(1-z))$ is easily seen to be maximized at $\theta=\pi$, where it equals $1 /(1+r)$, or about $1 / 2$. Let $\beta>0$ be a constant less than $\operatorname{Re}(1 /(1-$ z)) for $\mathrm{all}|z|=r$. Since $1-1 / \alpha$ in the exponent of the preceding integral is negative, it follows that

$$
|g(z)|=O\left(\sqrt{n} \int_{\alpha=0}^{1} e^{(1-1 / \alpha) \beta} d \alpha / \alpha\right)
$$

We break the range of integration for α into $[0,1 / 10]$ and $[1 / 10,1]$. Since

$$
\begin{aligned}
& \int_{\alpha=1 / 10}^{1} e^{(1-1 / \alpha) \beta} d \alpha / \alpha=O(1) \\
& O\left(\sqrt{n} \int_{\alpha=1 / 10}^{1} \cdots d \alpha / \alpha\right)=O(\sqrt{n})
\end{aligned}
$$

On $[0,1 / 10], 1-1 / \alpha<-1 / 2 \alpha$, so

$$
\sqrt{n} \int_{\alpha=0}^{1 / 10} e^{(1-1 / \alpha) \beta} d \alpha / \alpha=O\left(\sqrt{n} \int_{0}^{1 / 10} e^{-\beta / 2 \alpha} d \alpha / \alpha\right)
$$

Let $\gamma=\beta /(2 \alpha)$, so $d \alpha / \alpha=-d \gamma / \gamma$ and

$$
\int_{0}^{1 / 10} e^{-\beta / 2 \alpha} d \alpha / \alpha=\int_{\gamma=5 \beta}^{\infty} e^{-\gamma} d \gamma / \gamma
$$

Since β is only required to be less than $1 /(1+r)$, and $0<r<1$, we can presume that $5 \beta>1$. Then, since

$$
\int_{1}^{\infty}\left(e^{-x} / x\right) d x=O(1)
$$

we get

$$
\sqrt{n} \int_{\alpha=0}^{1 / 10} e^{(1-1 / \alpha) \beta} d \alpha / \alpha=O(\sqrt{n})
$$

Hence $|g(z)|=O(\sqrt{n})$ regardless of where z lies on $|z|=r$.

3. Inclusion of Specific Terms in TGFs

Recall that $f\left(k_{1}, \ldots, k_{m}\right)$ is the length of a shortest TGF which contains at least one permutation of the positive integer sequence $\left(k_{1}, \ldots, k_{m}\right)$. If there is no such TGF, we say that $f\left(k_{1}, \ldots, k_{m}\right)$ is undefined.

Theorem 3: $f\left(k_{1}, \ldots, k_{m}\right)$ is always defined for $m \leq 4$ but can be undefined for $m \geq 5$.

Proof: Let $k=\max \left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$ and assume with no loss in generality that $k_{1} \leq k_{2}$ and $k_{3} \leq k_{4}$. Then $k_{2} k_{1} 1 \ldots 1 k_{3} k_{4}$ with $k l^{\prime}$'s in the middle is a TGF. However, $f(4,5,6,7,8)$ is undefined since, according to the monotonicity property, at least three numbers from $\{4,5,6,7,8\}$ must appear in increasing order (away from the l's) on the same side of the block of 1 's, and this is clearly impossible for a TGF.

Theorem 4: $f(k)=\left\lceil\log _{2} k\right\rceil+2$ for $k \geq 2$.
Proof: Since the largest possible term in a sequence in T_{n} is 2^{n-2} (from 11248 $\ldots 2^{n-2}$, for example), $f(k) \geq\left\lceil\log _{2} k\right\rceil+2$ for $k \geq 2$. Conversely, given $k \geq 2$ and its expansion as a sum of powers of 2 , say,

$$
k=2^{k_{1}}+2^{k_{2}}+\cdots+2^{k_{p}} \text { with } 0 \leq k_{1}<k_{2}<\cdots<k_{p}
$$

let $u_{1}<u_{2}<\ldots<u_{q}$ be all integers in $\left\{0,1, \ldots, k_{p}\right\} \backslash\left\{k_{1}, \ldots, k_{p}\right\}$. Then the $\left(k_{p}+2\right)$-term sequence

$$
2^{k_{p}}, \ldots, 2^{k_{2}}, 2^{k_{1}}, 1,2^{u_{1}}, 2^{u_{2}}, \ldots, 2^{u_{q}}
$$

is a TGF since each 2^{x} equals 1 plus all terms 2^{y} with $y<x$. If $k=2^{k_{p}}$, then it follows that

$$
f(k) \leq k_{p}+2=\log _{2} k+2
$$

if $k>2^{k_{p}}$, then the addition of k to the left end of the sequence gives another TGF, from which

$$
f(k) \leq k_{p}+3 \leq\left\lceil\log _{2} k\right\rceil+2
$$

follows. Hence,

$$
f(k)=\left\lceil\log _{2} k\right\rceil+2 \text { for } k \geq 2
$$

The next steps beyond Theorem 4 are to consider $f\left(k_{1}, k_{2}\right)$ and $f\left(k_{1}, k_{2}\right)$ $f\left(k_{2}\right)$ when $k_{1} \leq k_{2}$. We have systematically verified

$$
f\left(k_{1}, k_{2}\right) \leq f\left(k_{2}\right)+1 \quad\left(k_{1} \leq k_{2}\right)
$$

for all $k_{2} \leq 16$, but do not know if this holds for larger k_{2}. Similarly, we do not know if there is a fixed c such that

$$
f\left(k_{1}, k_{2}, k_{3}\right) \leq f\left(k_{2}, k_{3}\right)+c \text { whenever } k_{1} \leq k_{2} \leq k_{3}
$$

However, we do have the following result.
Theorem 5: If $k_{1} \leq k_{2} \leq k_{3} \leq k_{4}$, then $f\left(k_{1}, k_{2}, k_{3}, k_{4}\right)-f\left(k_{2}, k_{3}, k_{4}\right)$ can be arbitrarily large.

The following lemma is used in the proof of Theorem 5. We will prove the lemma shortly. Here, $\lfloor x\rfloor$ is the integer part of x.

Lemma 1: $f(k, k+1, k+2, k+3) \geq\lfloor k / 3\rfloor+6$ for $k>3$.

Proof of Theorem 5: Let

$$
\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(k, k+1, k+2, k+3)
$$

with $k+1=2^{p}$ and $p \geq 3$. Then

$$
f(k+1, k+2, k+3) \leq p+5=\log _{2}(k+1)+5
$$

since

$$
2^{p}+2,2^{p}+1,1,1,1,2,4,8, \ldots, 2^{p}
$$

is a TGF in T_{p+5}. When this is combined with the conclusion of Lemma 1 , we have

$$
f\left(k_{1}, k_{2}, k_{3}, k_{4}\right)-f\left(k_{2}, k_{3}, k_{4}\right) \geq\lfloor k / 3\rfloor+1-\log _{2}(k+1)
$$

and the right-hand side can be made arbitrarily large.
Proof of Lemma 1: Let $S=x_{1} \ldots x_{n}$ be a shortest TGF that contains the integers in

$$
K=\{k, k+1, k+2, k+3\}, k>3
$$

By the monotonicity property, $x_{i} \leq k+3$ for all i.

$$
\text { CLAIM: } K=\left\{x_{1}, x_{2}, x_{n-1}, x_{n}\right\}
$$

To prove the Claim, note first that since $k>3$, it is impossible for more than two elements of K to appear in increasing order away from the center on the same side of the sequence 1,1 . Thus, there must be two elements of K on each side of the block of l's. Since S is a shortest TGF, elements of K should be at the beginning and end of S, and there are no repetitions of elements of K. Thus, x_{1} and x_{n} are in K. The Claim follows by monotonicity of S.

We now use the Claim to analyze the following three cases:

$$
\begin{array}{ll}
\text { Case } 1: & x_{1}, x_{2}=k+1, k ; x_{n-1}, x_{n}=k+2, k+3 . \\
\text { Case } 2: & x_{1}, x_{2}=k+2, k ; x_{n-1}, x_{n}=k+1, k+3 . \\
\text { Case } 3: & x_{1}, x_{2}=k+3, k ; x_{n-1}, x_{n}=k+1, k+2 .
\end{array}
$$

The other three possible cases are symmetric to these.
Case 1: By the construction process, this case forces S to be

$$
k+1, k, 1, \ldots, 1, k+2, k+3
$$

By monotonicity, all remaining terms are 1^{\prime} s and so there are $k+2$. $1^{\prime} s$. It follows that $n=(k+2)+4=k+6$, and $k+6 \geq\lfloor k / 3\rfloor+6$.

Case 2: For this case, let

$$
S=k+2, k, p, \ldots, q, k+1, k+3
$$

To obtain $k+2$ by the construction process, we must have $p \leq 2$, and similarly, $q \leq 2$. Hence, all terms from p through q are ≤ 2. Since there must be at least two l^{\prime} s, and since $p+\cdots+q \geq k+1$, we note that to obtain $k+1$ by construction, we must have

$$
n \geq 2+\left\lceil\frac{k-1}{2}\right\rceil+4=\left\lceil\frac{k-1}{2}\right\rceil+6 \geq\lfloor k / 3\rfloor+6
$$

Case 3: Let

$$
S=k+3, k, p, \ldots, q, k+1, k+2
$$

which forces $q=1$ and $p \leq 3$. Since the p through q part must end in 111 or 211, and since every other term in this part is ≤ 3 by the monotonicity property,

$$
n \geq 3+\left\lceil\frac{k+1-4}{3}\right\rceil+4=\lceil k / 3\rceil+6 \geq\lfloor k / 3\rfloor+6
$$

4. Remarks

Questions of uniqueness in finite measurement structures are proving to be a rich source of interesting combinatorial and number-theoretic problems, as shown in $[2,3]$ and the present paper, and summarized in [4, 8]. Our story here is the familiar one of encountering Fibonacci-like structures in an area where none was visible at the start. Not only are TGFs natural generalizations of the basic Fibonacci sequence in their two-sidedness and their relaxation of the requirement that a new addition be the sum of exactly two neighbors, but the sequence $t_{1}, t_{2}, t_{3}, \ldots$ that counts the number of TGFs has a recurrence in which the next term is determined by precisely its two immediate predecessors.

The most obvious problems left open in the paper concern boundedness, or better, of $f\left(k_{1}, k_{2}, k_{3}\right)-f\left(k_{2}, k_{3}\right)$ and $f\left(k_{1}, k_{2}\right)-f\left(k_{2}\right)$ when $k_{1} \leq k_{2} \leq k_{3}$. A further possibility for investigation is $f^{*}\left(k_{1}, \ldots, k_{m}\right)$, the length of the shortest TGF, if any, that has k_{1}, \ldots, k_{m} as a subsequence.

We mention two generalizations of two-sided generalized Fibonacci sequences. The first is also two-sided and is constructed like a TGF except that the value of a new term at either end can equal the sum of one or more contiguous terms (including a single 1) located anywhere in the sequence constructed thus far. Some results for this generalization are included in [2].

The other generalization is one of a large number of things that might be referred to as generalized Fibonacci trees. The tree we have in mind is constructed like a TGF except that it has N rather than 2 branches extending away from a root that consists of two l's. The value of a new term added to a branch is the sum of one or more extant terms consisting of either (a) immediate predecessors on that branch, or (b) all those predecessors plus one or both root l's, or (c) all its branch predecessors plus both root l's plus terms contiguous to the root along some other branch. We are not aware of results for this generalization.

Acknowledgments

The authors thank Suh-ryung Kim and Barry Tesman for their helpful comments. Fred Roberts would like to thank the National Science Foundation for its support under grant number IST-86-04530 to Rutgers University.

References

1. N. G. de Bruijn. Asymptotic Methods in Analysis. 3rd ed. Amsterdam: North-Holland, 1970.
2. P. C. Fishburn, H. Marcus-Roberts, \& F. S. Roberts. "Unique Finite Difference Measurement." SIAM J. on Discrete Math. 1 (1988):334-354.
3. P. C. Fishburn \& A. M. Odlyzko. "Unique Subjective Probability on Finite Sets." J. Ramanujan Math. Soc. (in press).
4. P. C. Fishburn \& F. S. Roberts. "Uniqueness in Finite Measurement." In Applications of Combinatorics and Graph Theory in the Biological and Social Sciences, ed. F. S. Roberts. New York: Springer-Verlag (in press).
5. W. K. Hayman. "A Generalisation of Stirling's Formula." Journal für die reine und angewandte Mathematik 196 (1956):67-95.
6. D. H. Krantz, R. D. Luce, P. Suppes, \& A. Tversky. Foundations of Measurement. Vol. I. New York: Academic Press, 1971.
7. F. S. Roberts. Measurement Theory, With Applications to Decisionmaking, Utility, and the Social Sciences. Reading, Mass.: Addison-Wesley, 1979.
8. F. S. Roberts. "Issues in the Theory of Uniqueness in Measurement." In Graphs and Order, ed. I. Riva1, pp. 415-444. Amsterdam: Reide1, 1985.
9. F. S. Roberts \& Z. Rosenbaum. "Tight and Loose Value Automorphisms." Discrete Applied Math. 22 (1988):69-79.
10. N. J. A. Sloane. A Handbook of Integer Sequences. New York: Academic Press, 1973.
