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1. Introduction 

This paper investigates a concept called a two-sided generalized Fibonacci 
sequence (TGF) that was motivated by problems of uniqueness in measurement 
representations [2-4, 6-8]. The particular context that gives rise to TGFs is 
finite algebraic difference measurement [2, 6-8]. For simplicity, suppose that 
n + 1 objects a-,, ..., #M + 1 are linearly ordered by a real-valued function u as 

w(a1) < u(a2) < ••• < u(an+1) 

and that comparisons can be made between positive differences u(aj) - u(a^), 
i < j . In measurement theory, we are sometimes concerned with conditions which 
guarantee that the u values are unique up to a positive affine transformation 

w •> aw + 3» ct > 0, 

Let di > 0 be defined by 

di = u(ai+l) - u{at). 
Then we search for conditions which guarantee that the d-i are unique up to 
multiplication by a positive constant a. Each equality-of-d±fferences compari-
son yields an equation of the form 

di + di + i + •••+ dj = dk + dk + i + • • • + ̂ £ > 1 ̂  i'^0 < k < I < n, 
in the variables d^. If there are n - 1 linearly independent equations of this 
type that have a strictly positive solution, then their solution by positive di 
is unique up to multiplication of every d^ by the same positive constant. For 
example, the three equations 

d\ = d^i d2 + d% = di+> di + d2 = d$ + di+ 
have solution d* ... d* = 2213, and if d[ ... d^ is any other positive solution 
then there is a X > 0 such that d[ = Xd* for each i. We refer the interested 
readers to [2] for additional discussion of this type of uniqueness in the 
general algebraic difference setting. 

A TGF is a finite sequence of positive integers constructed by starting 
with a 1 and adding terms one by one at either end of the sequence S con-
structed thus far so that each new term equals the sum of one or more 
contiguous terms on the end of S at which the new term is placed. A new term v 
added to S = Xi ... xm produces either vx\ . . . xm with 

U t \ i/O -I , X -l T" X ry 5 a s . , X -1 I . . . ""f~ X ~, J 

or xi ... xmv with 

v e {xm9 xm + xm_li ..., xm + ... + Xl}. 
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TGFs arise from specialized sets of equations of the type described in the 
preceding paragraph. One example for n = 4 is 2114, which is the unique posi-
tive solution (up to multiplication by a positive constant) to 

d2 = d%, d\ = d2 + d%9 di+ = d\ + d2 + d$. 
Although many unique solutions to equations for the general algebraic differ-
ence setting do not correspond to TGFs, as is true for 

d\ . . . d% = 2213, 

two-sided generalized Fibonacci sequences constitute an important subset of all 
such unique solutions, and it is this subset that we study here. 

Let Tn denote the set of all n-term TGFs, and let tn = \Tn |. Then 

Tx = {1}, T2 = {(1, 1)} = {11}, T3 = {111, 112, 211}, 

Tk = {1111, 1112, 1113, 1122, 1123, 1124, 2111, 
2112, 2114, 2211, 3111, 3211, 4112, 4211}, 

and so forth, with t\ = t2 = 1, t$ = 3, ti± = 14, and, as we shall see, £5 = 85, 
tg = 626, .... We note that every TGF for n > 2 has the monotonicity property, 
which means that there is a subsequence of two or more contiguous lfs and the 
sequence is nondecreasing in both directions away from that subsequence. Given 
any finite integer sequence 

bj ... b2bll ... la ^2 * * * ak 

with the monotonicity property, a simple outside-in algorithm identifies 
whether it is a TGF. At each step of the algorithm, we ask whether a largest 
end term is the sum of a contiguous block of terms next to it. If not, the 
sequence is not a TGF; else delete that end term and repeat the question. If 
deletions leave only l!s, the sequence is a TGF. 

We close this section by summarizing our main results. Our first main 
counting result is the nonlinear recurrence 

tn+i = 2ntn - (n - l)2tn_! for n > 2, 

which has the Fibonacci feature that each new term in 

(tl9 t 2 , ...) = (1, 1, ...) 

is determined from its two immediate predecessors. Since the tn sequence is 
not in Sloane's book [10] and has not been brought to that author's attention 
by others (N. J. A. Sloane, personal communication), it may not have been 
studied previously. 

The recurrence implies that 

(/n + 1/2)2 - 1/in < -J1±-L < (Vn + 1/2)2 for n > 2. 

This gives nice bounds on the ratio of successive tn and indicates the growth 
rate of the tn sequence. We omit the proof of these bounds, which follow with-
out great difficulty from the recurrence by induction, algebraic manipulation, 
and subsidiary inequalities such as 

1/2 < Jn{Jn - fn - 1). 

Our other main result for tn is an asymptotic estimate obtained from the 
exponential generating function 

00 4- rpYl~ X. 

Fix) = E " 
(n - 1)! 
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We prove that 

e \ - x 
F(x) = 

l_ 
i-y 1 r* e i-y 

- - I ay 
e Jy = o 1 - y 

and use this to obtain 

tn ~ K(n - l)le2/" lnllh, 

where K = Zj^/e/ir/2 and 
l 

1 f1 el~y 7 KY = dy = 0 .148495. . . . 
e Jy = 0 1 - y 

The ratios of successive values of this approximation of tn lie well within the 
bounds of the preceding paragraph. The generating function can also be used to 
obtain a fuller asymptotic approximation to t n . 

The results for tn are proved in the next section. Section 3 examines 
f(ki> . .., km) , the length of a shortest TGF that contains at least one 
permutation of the positive integer sequence (/C]_5 ..., km) as a (not neces-
sarily contiguous) subsequence. We note first that f{k\, . .., km) is always 
defined for m < 4 but can be undefined for m > 5 because no TGF has a permuta-
tion of ki, . .., km as a subsequence. We then show for a single integer k > 2 
that 

f(k) = \log2k\ + 2, 

where |~x] is the smallest integer at least as great as x. This result is fol-
lowed by a proof that, when k\ < k2 ^k3 < k\+9 f(k\9 k2, k$, ku) - f(k2, k3, ku) 
can be arbitrarily large. We do not know whether the same thing holds for 
f(ki, k2, k3) - f(k2, /c3) or for /(/q, k2) - f(k2) when k\ < k2 < k3, but con-
jecture that f(ki, k2) < f(k2) + 1. 

The paper concludes with remarks on open problems and generalizations. 

2. Counting TGFs 

Theorem 1: £]_ = 1, t2 = 1, and £n+1 = 2ntn - (n - l)2tn-i for n > 2. 

Proof: Each TGF X\ ... xn in Tn yields n left extensions vx\ ... xn in Tn+i for 
the n different values in 

{xi, xl + x2, ..., xi + ••• + xn}. 

It also yields n right extensions X\X2 ... xnv in Tn+ ]_ for the n different 
values in 

^ n ' xn + Xn-l > " ' ' } xn + " ' " + xl J • 

Thus, Tn induces ntn distinct members of Tn+1 by left extension and ntn dis-
tinct members of Tn+i by right extension. But the 2ntn total can contain 
duplications between left and right extensions. 

Call a sequence in Tn+1 a sequence of duplication if it arises from both a 
left extension and a right extension of sequences in Tn . Consider the condi-
tion 

z2 ... zn e Tn_is %i = z2 + ••• + Zj for some 2 < j < n, (A) 

and sn+1 = zn + • •• + 2^ for some 2 < k < n. 

If (A) holds, then Z\Z2 ... sn£n + 1 is clearly a sequence of duplication, since 
3]_ ... sn and s2 ... sn + l are in Tn . 
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Conversely, if Sj ... 2n + 1 is a sequence of duplication, then (A) holds. 
To see this, suppose 

2l ••• s„ + 1 = a%i *.. xn = yl . . . ynb 

with xi . . . xn and 2/2 ... yn in Tn, 

a = x1 + ••• + Xj for some 1 < j < n, and 

^ = yn
 + * " " + #£ f o r some 1 ̂  k ^ n. 

We cannot have a = X\ + ... + xn, since otherwise y^ > yz + ... + yn, contra-
dicting yi . . . yn G Tn . Similarly, b cannot equal yn + . .. + y±m We can con-
clude that (A) holds for Zi = a and sn + 1 = b, provided that we can show that 
S = z2 ••• zn i s i n ^n-1- Suppose, to the contrary, that S £ ^n-l» Then 

xk = xk+l + • • • + ̂ n for some k < n - 1. 
If this is true only for k = n - 1, then xn can be the last term added in the 
construction of X| . . . xn so that its deletion leaves member x^ . . . xn_i = S of 
Tn_i» Hence, we suppose that 

xk = Xfr+i + ••• + xn for some k < n - 2. 

By a symmetric argument for y± ... z/n , 5 £ ^n-\ implies that 

2/j = 2/1 + • • • + 2 / j - l f o r s o m e J ^ 3 . 
With A: and j as just noted, xk = 2^ + 1, z/̂- = Zj , and the monotonicity property 
for 2j ... sn+i requires that there be some l's to the left of Zj and some l's 
to the right of s^ + 1. Therefore, k + 1 < j . But then zk + 1 > Zj (xk > yj) , 
since zk+i is a sum of terms that include Zj, and 2j > s^+i (yj > Xy) , since 2j 
is a sum of terms that include zk+1 . We therefore have a contradiction and 
conclude that S G ̂ Vz-1-

We have shown that (A) holds if and only if Z\ ... zn+l is a sequence of 
duplication. Since for every member of Tn_i each of z\ and zn+i can be chosen 
independently in n - 1 ways to satisfy (A), there are precisely (n - l)2tn„i 
sequences of duplication. Each of these corresponds to one left extension and 
one right extension from Tn. Therefore, 

tn+i = 2ntn - (n - l)2tn_1. D 

A s i m p l e a p p l i c a t i o n of Theorem 1 shows t h a t 

£ 5 = 8 5 , t 5 = 6 2 6 , t7 = 5 3 8 7 , tQ = 5 2 , 8 8 2 , 

t 9 = 5 8 2 , 1 4 9 , t 1 0 = 7 , 0 9 4 , 2 3 4 , t x l = 9 4 , 7 3 0 , 6 1 1 , . . . . 

Theorem 2: tn ~ (n - 1) \Kxiehe'l^l (2n1/i+), w h e r e 

1 

1 f 1 e^-y n 
£i = - - I dy = 0 . 1 4 8 4 9 5 . = 0 1 " 2/ 

Proof: The proof is based on the saddle point method of asymptotic analysis 
described, for example, in de Bruijn [1]. As we note shortly, the main step in 
the proof is covered by results of Hayman [5]. 

We begin with the recurrence of Theorem 1 and form the exponential gener-
ating function 

n-l 

Fix) = £ , " M , 
n = i (n - 1) ! 
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Using the r e c u r r e n c e , we ge t 

Ff(x)(l - x)1 - F{x){2 - x) = - 1 . 

We solve this linear differential equation by a standard method to obtain 
1 

F{x) 

1 
e l - x 

1 - X 1 Jx 1 - y * 

where K\ is as defined in Theorem 2. 
Ignoring fl . .. dy for the moment, we use the saddle point method to obtain 

the asymptotic estimate of the coefficient cn of xn in the power series expan-
sion of el^l~ x^/ (I - x) . It follows from Hayman [5] (and by our independent 
verification) that 

Since cnlcn-\ •* 1 and (see below) fl . . . dy Is insignificant compared to K\, we 
conclude that 

tn/(n - 1)! ~ K^/^he2^ lnl/h 

as claimed in Theorem 2. 
To show that the fj- . .. dy part of F{x) can be ignored asymptotically, we 

first extend this part of F(x) to the complex plane by defining 
1 l z-u 

el~z fl el~u 1 f 1 e ( i - ^ X i - u ) » 
q(z) = I du = I du = lL d^z71. 
^ 1 - zja 1 - U 1 ~ sis 1 - W n n = 0 

By Cauchyfs integral equation, 

g(z) dz 

and therefore 
|2| = j, s s 

max | £7(3) | _ max I ̂ (s) I 

where v = 1 - l//n and the max is taken on the circle | z | = v. We shall show 
that 

1*7(3)1 = O(Jn) for all z with \z\ = P. 

It then follows that 

\dn\ = OiJne^) 

and hence that 

£(n3A /e^) 0. 
*1<V 

Therefore, the total coefficient of xn in the power series expansion of F(x) 
is ~ Kion. 

To obtain 

j(z)\ = 0(i/n) on 3 = r, 

we begin with the second integral expression of g(z) in the preceding paragraph 
and define a by 

u = 1 - a(l - z) 
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t o o b t a i n 

y v 1 -^Ja=o a 

Since Re(l/(1 - z)) = (1 - Re(s))/|l - z\2 and 1 - 1/a < 05 this yields 

I / ) I < ___J__f1 (1- l/a)(l-Re(2))/|l-2|2 ̂ a 

^ ' " |1 ~ *|Ja-0 

With z = p(cos 0 + i, sin 0) in polar coordinates , 

| 1 - z | = (1 - 2v cos 0 + P 2) 1/2 . 

This i s minimized a t 6 = 05 so 

m i n | l - z\ = I - r = l//n« 

There fo re ? 

m a x ( 1 / | 1 - z\) = Jn. 
Moreover, Re ( 1 / ( 1 - z)) i s e a s i l y seen to be maximized a t 0 = IT, where i t 
equa l s 1/(1 + r ) , or about 1/2. Let 3 > 0 be a c o n s t a n t l e s s than R e ( l / ( 1 -
z)) for a l l \z\ = r . Since 1 - 1/a i n the exponent of the p reced ing i n t e g r a l 
i s n e g a t i v e , i t fo l lows t h a t 

\g(z)\ = OWn'f e ( 1 - 1 / a ) 3 d a / a V 

We break the range of i n t e g r a t i o n for a i n t o [0 , 1/10] and [ 1 / 1 0 , 1 ] . Since 

I e^l-l/a^da/a = (9(1), 
J(x = 1/10 

o(/nf . . . da/a] = 0(/n) . 
\ ^ a = l / 1 0 / 

On [0 , 1 /10] , 1 - 1/a < - l / 2 a , so 

•1/10 / r i / i o 
e^/2a da/a /nl e(l~l/a^da/a = olSnl 

Ja=Q \ JO 

Let y = 3 / ( 2 a ) , so da/a = ~-dy/y and 

f l / 1 0 f<*> 
e^/2a da/a = I e~y dy/y. 

JO Jy =56 

Since 3 i s only r e q u i r e d to be l e s s than 1/(1 + r ) , and 0 < v < 1, we can p r e -
sume t h a t 53 > 1. Then, s i n c e 

J (e~x/x)dx = 0(1), 
we get 

r 1 / 1 0 r-
fal e ( i - i /« )e j a / a = o(vn). 

J a = 0 

Hence |^(s)| = 0(Vn) regardless of where z lies on \z\ = v. Q 
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3. Inclusion of Specific Terms in TGFs 

Recall that f(ki> . .., km) is the length of a shortest TGF which contains 
at least one permutation of the positive integer sequence (k\ , . . . , km) . If 
there is no such TGF, we say that f(k\, . .., km) is undefined. 

Theorem 3: f(ki, . .., km) is always defined for m < 4 but can be undefined for 
m > 5. 

Proof: Let k = maxl^, k2, k3, ki+} and assume with no loss in generality that 
k\ < k2 and k3 < ki+. Then k2kil ... lk3ki+ with k l's in the middle is a TGF. 
However, /(4, 5, 6, 7, 8) is undefined since, according to the monotonicity 
property, at least three numbers from {4, 5, 6, 7, 8} must appear in increasing 
order (away from the l's) on the same side of the block of lTs, and this is 
clearly impossible for a TGF. • 

Theorem 4: f(k) = [log2k] + 2 for k > 2. 

Proof: Since the largest possible term in a sequence in Tn is 2n~2- (from 11248 
... 2n~2, for example), f(k) > |~log2/c] + 2 for k > 2. Conversely, given k > 2 
and its expansion as a sum of powers of 2, say, 

k = 2kl + 2kz + ... + 2^p with 0 < £i < k2 < ... < /cp, 

let Ui < u2 < - • • < uq be all integers in {0, 1, ..., £:p}\{/q, ..., kp}. Then 
the (kp + 2)-term sequence 

Z. , . . . , Z . , Z . , 1 , Z j Z ' , . . . , Z 

k is a TGF since each 2X equals 1 plus all terms 2U with y < x. If & = 2 p, then 
it follows that 

f(k) < kp + 2 = log2k + 2; 

if k > 2 p , then the addition of /c to the left end of the sequence gives 
another TGF, from which 

f(k) < kv + 3 < \log2k\ + 2 

f o l l o w s . Hence, 

f(k) = \log2k] + 2 for k > 2. D 

The next steps beyond Theorem 4 are to consider f(k\, k2) and f(k\, k2) -
f(k2) when k\ < k2. We have systematically verified 

f(klt k2) < f(k2) + l (ki < k2) 

for all k2 < 16, but do not know if this holds for larger k2. Similarly, we do 
not know if there is a fixed o such that 

f(ki, k2, k3) < f(k2, k3) + c whenever k\ < k2 < k$. 
However, we do have the following result. 

Theorem 5: If kl < k2 < k3 < kh, then f(kl9 k2, k3, kh) - f(k2, k3, kh) can be 
arbitrarily large. 

The following lemma is used in the proof of Theorem 5. We will prove the lemma 
shortly. Here, [xj is the integer part of x. 

Lemma 1: f(k, k + 1, fc + 2, fc + 3) > L̂ /3J + 6 for ^ > 3. 
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Proof of Theorem 5: Let 

(kl9 k2, k3, kh) = (k, k + 1, k + 2, k + 3) 
wi th k + 1 = 2P and p > 3 . Then 

/(fc + 1, fc + 2 , fc + 3) < p + 5 = log2(A: + 1) + 5 
s i n c e 

2P + 2 , 2P + 1, 1, 1, 1, 2 , 4 , 8, . . . , I9 

i s a TGF in Tp + 5 . When t h i s i s combined wi th the conc lus ion of Lemma 1, we 
have 

f(klf k2, k3, kO - f(k2, k3, k±) > [k/3\ + 1 - log2(A: + 1 ) , 
and the r i g h t - h a n d s i d e can be made a r b i t r a r i l y l a r g e . Q 

Proof of Lemma 1: Let S = xi 
sers in 

be a shortest TGF that contains the inte-

K = {k, k + 1, k + 2, k + 3}, k > 3. 

By the monotonicity property, x^ < k + 3 for all i . 

CLAIM: K = {#]_, i2'
 xn-l> xn^ • 

To prove the Claim, note first that since k > 3, it is impossible for more than 
two elements of K to appear in increasing order away from the center on the 
same side of the sequence 1, 1. Thus, there must be two elements of K on each 
side of the block of l's. Since S is a shortest TGF, elements of K should be 
at the beginning and end of S, and there are no repetitions of elements of K. 
Thus, x1 and xn are in K. The Claim follows by monotonicity of S. 

We now use the Claim to analyze the following three cases: 

Xi, x2 = k + 1, k; xn-i, xn = k + 2, k + 3. 

X\i x2 = k + 2, k; xn_i, xn - k + 1, fc + 3. 

xi, x2 = k + 3, k; xn-i> xn = k + 1, /c + 2. 

The other three possible cases are symmetric to these. 

Case 1: By the construction process, this case forces S to be 

fc + 1, k, 1, ...,1, Zc + 2, Zc + 3. 

By monotonicity, all remaining terms are l's and so there are k + 2 1fs. It 
follows that n = (k + 2) + 4 = fe + 6, and fe + 6 > [̂ /̂J + 6. 

Case 2; For this case, let 

S = k + 2, Zc, p, .. ., <?, fe + 1, A: + 3. 
To obtain k + 2 by the construction process, we must have p < 2, and similarly, 
q < 2. Hence, all terms from p through <? are <2. Since there must be at least 
two l's, and since p+... . + q > / c + l , we note that to obtain k + 1 by con-
struction, we must have 

Case 

Case 

Case 

1 

2 

3 

n > 2 + fc - 1 + 4 = [k 1 + 6 > [fc/3J + 6. 

1989] 359 



TWO-SIDED GENERALIZED FIBONACCI SEQUENCES 

Case 3: Let 

S = k + 3, k, p, ..., q, k + 1, k + 2 
which forces q = 1 and p < 3. Since the p through (7 part must end in 111 or 
211, and since every other term in this part is < 3 by the monotonicity 
property, 

n > 3 + k + 1 - 4 + 4 = [fc/3] + 6 > L^/3j + 6. D 

4. Remarks 

Questions of uniqueness in finite measurement structures are proving to be 
a rich source of interesting combinatorial and number-theoretic problems, as 
shown in [2, 3] and the present paper, and summarized in [4, 8]. Our story 
here is the familiar one of encountering Fibonacci-like structures in an area 
where none was visible at the start. Not only are TGFs natural generalizations 
of the basic Fibonacci sequence in their two-sidedness and their relaxation of 
the requirement that a new addition be the sum of exactly two neighbors, but 
the sequence t \ , t 2 , £3, ... that counts the number of TGFs has a recurrence in 
which the next term is determined by precisely its two immediate predecessors. 

The most obvious problems left open in the paper concern boundedness, or 
better, of f(ki} k2, k 3) - f(k2> k 3) and f(ki> k2) ~ f(k2) when kx < k2 ^ k3. 
A further possibility for investigation is f*(k\9 ..., km), the length of the 
shortest TGF, if any, that has /q, ..., km as a subsequence. 

We mention two generalizations of two-sided generalized Fibonacci sequences. 
The first is also two-sided and is constructed like a TGF except that the value 
of a new term at either end can equal the sum of one or more contiguous terms 
(including a single 1) located anywhere in the sequence constructed thus far. 
Some results for this generalization are included in [2]. 

The other generalization is one of a large number of things that might be 
referred to as generalized Fibonacci trees. The tree we have in mind is con-
structed like a TGF except that it has N rather than 2 branches extending away 
from a root that consists of two lfs. The value of a new term added to a 
branch is the sum of one or more extant terms consisting of either (a) immedi-
ate predecessors on that branch, or (b) all those predecessors plus one or both 
root l!s, or (c) all its branch predecessors plus both root l!s plus terms 
contiguous to the root along some other branch. We are not aware of results 
for this generalization. 
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