UNITARY PERFECT NUMBERS WITH SQUAREFREE ODD PART

S. W. GRAHAM

Michigan Technological University, Houghton, MI 49931
(Submitted July 1987)

1. Introduction

A divisor d of a natural number n is said to be unitary if and only if

$$
(d, n / d)=1
$$

The sum of the unitary divisors of n is denoted $\sigma^{*}(n)$. It is straightforward to show that if

$$
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}
$$

then

$$
\sigma^{*}(n)=\left(p_{1}^{a_{1}}+1\right)\left(p_{2}^{a_{2}}+1\right) \cdots\left(p_{k}^{a_{k}}+1\right) .
$$

A natural number n is said to be unitary perfect if $\sigma^{*}(n)=2 n$.
Subbarao and Warren [2] discovered the first four unitary perfect numbers:

$$
6=2 \cdot 3,60=2^{2} \cdot 3 \cdot 5,90=2 \cdot 3^{2} \cdot 5,87360=2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 13 .
$$

Wall [3] discovered another such number,
$46361946186458562560000=2^{18} \cdot 3 \cdot 5^{4} \cdot 7 \cdot 11 \cdot 13 \cdot 19 \cdot 37 \cdot 79 \cdot 109 \cdot 157 \cdot 313$,
and he later showed [4] that this is the fifth unitary perfect number. No other unitary perfect numbers are known, and Wall [5] has shown that any other such number must have an odd prime divisor exceeding 2^{15}.

In this paper, we consider the existence of unitary perfect numbers of the form $2^{m} s$, where s is a squarefree odd integer. We shall prove that there are only three such numbers.

Theorem: If $2^{m} s$ is a unitary perfect number and s is squarefree, then either $m=1$ and $s=3, m=2$ and $s=3 \cdot 5$, or $m=6$ and $s=3 \cdot 5 \cdot 7 \cdot 13$.

2. Preliminaries

Throughout this paper, the letter s shall be used to denote an odd squarefree number. The letter p, with or without a subscript, shall denote an odd prime. The letter q, with or without a subscript, shall denote a Mersenne prime.

Our starting point is the observation that, for any fixed m, it is easy to determine all unitary perfect numbers of the form $2^{m} s$. From the previously stated formula for $\sigma *(n)$, we see that if $s=p_{1} p_{2} \ldots p_{r}$, then $2^{m} s$ is unitary perfect if and only if

$$
\begin{equation*}
2=\frac{\sigma^{*}\left(2^{m} s\right)}{2^{m} s}=\frac{2^{m}+1}{2^{m}} \cdot \frac{p_{1}+1}{p_{1}} \cdot \frac{p_{2}+2}{p_{2}} \cdot \cdots \cdot \frac{p_{r}+1}{p_{r}} . \tag{1}
\end{equation*}
$$

Any odd prime dividing $2^{m}+1$ must appear as a denominator on the right-hand side. If p is such a prime, then all odd prime divisors of $p+1$ must also appear as 1989]

UNITARY PERFECT NUMBERS WITH SQUAREFREE ODD PART

denominators on the right-hand side. If we can force a prime to appear more than once, then we can conclude that there is no unitary perfect number of the form $2^{m} s$.

For example, suppose $m=7$. Since $2^{7}+1=3 \cdot 43,3$ and 43 must appear as denominators on the right-hand side of (1). Since $11 \mid(43+1), 11$ must also appear. But $3 \mid(11+1)$, so 3 must appear twice. Therefore, there is no unitary perfect number of the form $2^{7} \mathrm{~s}$.

On the other hand, suppose $m=6$. Since $2^{6}+1=5 \cdot 13$, both 5 and 13 must be prime divisors of s. Since $3 \mid(5+1)$ and $7 \mid(13+1), 7$ and 13 must be prime divisors of s. If any other p divides s, then

$$
\frac{\sigma^{*}\left(2^{m} s\right)}{2^{m} s} \geq \frac{2^{6}+1}{2^{6}} \cdot \frac{3+1}{3} \cdot \frac{5+1}{5} \cdot \frac{7+1}{7} \cdot \frac{13+1}{13} \cdot \frac{p+1}{p}>2 .
$$

Therefore, the only unitary perfect number of the form $2^{6} s$ is $2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 13$.
Proceeding in this fashion, it is easy to show that the only unitary perfect numbers of the form $2^{m} s$ with $m<10$ are those listed in the theorem. Thus, we may assume henceforth that $m \geq 10$. (Alternatively, we could reduce to the case $m \geq 10$ by quoting a result of Subbarao [1].)

The method of the preceding paragraphs is "top-down": we start with divisors of $2^{m}+1$ and work down. While this procedure works well for specific m, it does not lend itself well to a proof in the general case. We therefore introduce an alternative "bottom-up" procedure. This procedure starts with the Mersenne primes dividing s and works up to the divisors of $2^{m}+1$. (A Mersenne prime is a prime of the form $2^{k}-1$; the first few such primes are

$$
\left.3=2^{2}-1,7=2^{3}-1,31=2^{5}-1,127=2^{7}-1,8191=2^{13}-1 .\right)
$$

First we note that s does have Mersenne prime divisors. For in equation (1), all odd prime divisors of $\sigma^{*}(s)=p_{1} p_{2} \ldots p_{r}$ must appear in the denominator of the right-hand side. But some of the $p_{i}{ }^{\prime} s$ divide $2^{m}+1$, so at least one of the terms $p_{i}+1$ must be free of any odd prime factors. It follows that p_{i} is a Mersenne prime.

Suppose q is a Mersenne prime dividing s. Renumber the primes in (1) so that $q=p_{1}$. There is some (necessarily unique) prime p_{2} dividing s such that $p_{1} \mid\left(p_{2}+1\right)$. Note that $p_{2} \geq 2 p_{1}-1$. Either $p_{2} \mid\left(2^{m}+1\right)$ or there is some p_{3} such that $p_{2} \mid\left(p_{3}+1\right)$. Continuing in this way, we obtain a sequence of primes

$$
\begin{equation*}
p_{1}<p_{2}<\cdots<p_{k} \tag{2}
\end{equation*}
$$

where p_{1} is a Mersenne prime, $p_{k} \mid\left(2^{m}+1\right)$, and $p_{i+1} \geq 2 p_{i}-1$.
To formalize the ideas of the preceding paragraph, we introduce the following function f. Let p be an odd prime in the denominator of the right-hand side of (1). We define $f(p)$ to be 1 if $p \mid\left(2^{m}+1\right)$. Otherwise, we define $f(p)$ to be the unique prime p^{\prime} such that $p^{\prime} \mid s$ and $p \mid\left(p^{\prime}+1\right)$. We define

$$
f_{0}(p)=p, f_{1}(p)=f(p), \text { and } f_{k+1}(p)=f\left(f_{k}(p)\right) .
$$

We also define

$$
f(1)=1 \quad \text { and } \quad f_{\infty}(p)=\prod_{i=0}^{\infty} f_{i}(p) .
$$

For example, if $m=6$ and $s=3 \cdot 5 \cdot 7 \cdot 13$, then

$$
f_{1}(3)=5, f_{2}(3)=1, \text { and } f_{\infty}(3)=3 \cdot 5
$$

Similarly,

$$
f_{\infty}(7)=7 \cdot 13 .
$$

Let $q_{1}, q_{2}, \ldots, q_{l}$ be the Mersenne primes dividing s. Then all odd primes dividing s occur in the product

$$
\begin{equation*}
f_{\infty}\left(q_{1}\right) f_{\infty}\left(q_{2}\right) \cdots f_{\infty}\left(q_{\ell}\right) \tag{3}
\end{equation*}
$$

At this point, we cannot rule out the possibility that this product contains repeated prime factors. For example, if $41 \mid s$, then $41 \mid f_{\infty}(3)$ and $41 \mid f_{\infty}(7)$. Accordingly, for each Mersenne prime q, we define $F\left(q_{i}\right)$ to be the product of all primes that divide $f_{\infty}\left(q_{i}\right)$ but do not divide any of $f_{\infty}\left(q_{1}\right), f_{\infty}\left(q_{2}\right), \ldots, f_{\infty}\left(q_{i-1}\right)$. With this definition, we have

$$
\frac{2^{m}+1}{2^{m}} \cdot \frac{\sigma^{*}\left(F\left(q_{1}\right)\right)}{F\left(q_{1}\right)} \cdot \cdots \cdot \frac{\sigma^{*}\left(F\left(q_{\ell}\right)\right)}{F\left(q_{\ell}\right)}=2
$$

If we write

$$
G(q)=\frac{\sigma^{*}(F(q))}{F(q)}
$$

then the above may be rewritten as

$$
\begin{equation*}
\frac{2^{m}+1}{2^{m}} G\left(q_{1}\right) \cdots G\left(q_{\ell}\right)=2 . \tag{4}
\end{equation*}
$$

The idea behind the proof is to obtain upper bounds for $G(q)$ that make (4) intenable. The crucial point here is that, if $p_{1}, p_{2}, \ldots, p_{k}$ are the primes lescribed in (2), then $p_{2} \geq 2 p_{1}, p_{3} \geq 4 p_{1}-3$, etc. It follows that

$$
G(q) \leq \prod_{i=0}^{\infty} \frac{2^{i} p_{i}-2^{i}+2}{2^{i} p_{i}-2^{i}+1}
$$

As we shall show in Lemmas 1 and 2 , this product converges. This bound for G is sufficient for the larger Mersenne primes. A more elaborate analysis is needed for the smaller primes.

3. Lemmas

Lemma 1: If ρ and δ are real numbers with $\rho>1$, then

$$
\prod_{i=0}^{\infty} \frac{\delta \rho^{i}-\left(\rho+\rho^{2}+\cdots+\rho^{i}\right)}{\delta \rho^{i}-\left(1+\rho+\rho^{2}+\cdots+\rho^{i}\right)}=\frac{(\rho-1) \delta}{(\rho-1) \delta-\rho}
$$

Proof: The $K^{\text {th }}$ partial product is

$$
\frac{\delta}{\delta-1} \cdot \frac{\rho \delta-\rho}{\rho \delta-\rho-1} \cdot \cdots \cdot \frac{\rho^{K} \delta-\rho^{K}-\cdots-\rho}{\rho^{K} \delta-\rho^{K}-\cdots-\rho-1} .
$$

Note that the numerator of each term after the first is ρ times the denominator of the previous term. Therefore, the $K^{\text {th }}$ partial product is

$$
\frac{\delta \rho^{K}}{\rho^{K} \delta-\rho^{K}-\cdots-\rho-1}=\frac{(\rho-1) \delta}{(\rho-1) \delta-\rho+\rho^{-K}} .
$$

The result follows by letting K tend to infinity.
Lemma 2: If $q=2^{m}-1$ is a Mersenne prime, then $G(q) \leq \frac{2^{m-1}}{2^{m-1}-1}$.

Proof: Let $p_{1}, p_{2}, \ldots, p_{k}$ be the primes dividing $G(q)$. Since $p_{1}=q=2^{m}$ and and $p_{i+1} \geq 2 p_{i}$, we see that

$$
p_{i} \geq 2^{m+i-1}-2^{i}+1
$$

Therefore,

$$
G(q) \leq \frac{2^{m}}{2^{m}-1} \cdot \frac{2^{m+1}-2}{2^{m+1}-3} \cdots
$$

The result now follows by applying Lemma 1 with $\delta=2^{m}$ and $\rho=2$.
Lemma 3: Let q_{j}, \ldots, q_{l} be the Mersenne primes that divide s and are at least 8191. Then

$$
G\left(q_{j}\right) \cdots G\left(q_{\ell}\right) \leq \frac{3072}{3071}
$$

Proof: It is well known that, if $2^{m}-1$ is prime, then must be prime. Thus, $m=2$ or m is odd. Consequently

$$
G\left(q_{j}\right) \cdots G\left(q_{\ell}\right) \leq \prod_{i=0}^{\infty} \frac{2^{12+2 i}}{2^{12+1 i}-1}
$$

We bound this by observing that

$$
\prod_{i=0}^{\infty} \frac{2^{12+2 i}}{2^{12+2 i}-1} \leq \prod_{i=0}^{\infty} \frac{2^{12+2 i}-4-4^{2}-\cdots-4^{i}}{2^{12+2 i}-1-4-4^{2}-\cdots-4^{i}}
$$

The result now follows from Lemma 1 with $\delta=2^{12}$ and $\rho=4$.
Lemma 4: Let q_{j}, \ldots, q_{l} be the Mersenne primes that divide s and are at least 127. Then

$$
G\left(q_{j}\right) \cdots G\left(q_{\ell}\right) \leq \frac{122}{121}
$$

Proof: We first get a bound on $G(127)$. Let p_{1}, \ldots, p_{r} be the primes that divide $F(127)$. If $r \leq 1$, then $G(127) \leq 128 / 127$. Assume that $r \geq 2$. Then $p_{1}=$ 127 and p_{2} is a prime of the form 127 - 1 , where all the odd prime divisors of h are at least 8191. Now 127•2 $2^{i} 1$ is composite for $1 \leq i \leq 7$, so $p_{2} \geq 127$ - $2^{8}-1=32511$. Therefore,

$$
G(127) \leq \frac{128}{127} \prod_{i=0}^{\infty} \frac{32511 \cdot 2^{i}-2-2^{2}-\cdots-2^{i}}{32511 \cdot 2^{i}-1-2-\cdots-2^{i}}=\frac{128}{127} \cdot \frac{16256}{16255}
$$

From this and Lemma 3, we see that

$$
G\left(q_{j}\right) \cdots G\left(q_{\ell}\right) \leq G(127) G(8191) \cdots \leq \frac{128}{127} \cdot \frac{16256}{16255} \cdot \frac{3072}{3071} \leq \frac{122}{121} .
$$

4. Proof of the Theorem

As stated in Section 2, we may assume that $m \geq 10$.
The proof breaks into three cases: (1) m odd, (2) $m \equiv 0 \bmod 4$, and (3) $m \equiv 2$ $\bmod 4$.
Case 1: Assume that m is odd. Then $3 \mid 2^{m}+1$, and $G(3)=4 / 3$. It follows that the left-hand side of (4) is

$$
\frac{2^{m}+1}{2^{m}} \frac{4}{3} G(7) G(31) \cdots \leq \frac{1025}{1024} \frac{4}{3} \frac{4}{3} \frac{16}{15} \frac{122}{121}<2 .
$$

Case 2: Assume that $m \equiv 0 \bmod 4$. Then $2^{m}+1 \equiv 2 \bmod 3$ and $2^{m}+1 \equiv 2 \bmod 5$. It follows that there is some prime p such that $p \mid 2^{m}+1, p \equiv 2$ mod 3 , and $p>5$. Moreover, the congruence $x^{4} \equiv-1 \bmod p$ has the solution $x \equiv 2^{\mathrm{m} / 4}$, so we have $p \equiv 1$ mod 8. By the Chinese Remainder Theorem, $p \equiv 17 \bmod 24$. We cannot have $p=17$ since $3^{2} \mid \sigma *(17)$. Therefore, $p \geq 41$, and the left-hand side of (4) is

$$
\frac{2^{m}+1}{2^{m}} \frac{4}{3} \frac{p+1}{p} G(7) G(31) \ldots \leq \frac{1025}{1024} \frac{4}{3} \frac{42}{41} \frac{4}{3} \frac{16}{15} \frac{122}{121}<2
$$

Case 3: Assume that $m \equiv 2 \bmod 4$. Then $5 \mid 2^{m}+1$, and

$$
G(3)=\frac{4}{3} \frac{6}{5}
$$

This case breaks into four subcases: (i) $7 \nmid s ;$ (ii) $7 \mid s$ and $13 \nmid s ;$ (iii) $7 \mid s$, $13 \mid \mathrm{s}$, and $103 \nmid \mathrm{~s}$; (iv) $7|\mathrm{~s}, 13| \mathrm{s}$, and $103 \mid \mathrm{s}$.

Subcase $3(i):$ Assume that $7 \nmid s$. Then the left-hand side of (4) is

$$
\frac{2^{m}+1}{2^{m}} G(3) G(31) G(127) \ldots \leq \frac{1025}{1024} \frac{4}{3} \frac{6}{5} \frac{16}{15} \frac{122}{121}<2
$$

Subcase 3 (ii): Assume that $7 \mid s$ and $13 \nmid s$. Other than 13 , the least prime of the form $7 h$ - 1 with all odd prime divisors of h greater than or equal to 31 is 7•32-1 = 223. Therefore,

$$
G(7) \leq \frac{8}{7} \prod_{i=0}^{\infty} \frac{224 \cdot 2^{i}-\left(2+2^{2}+\cdots+2^{i}\right)}{224 \cdot 2^{i}-\left(1+2+\cdots+2^{i}\right)}=\frac{8}{7} \frac{112}{111}
$$

Therefore, the left-hand side of (4) is

$$
\leq \frac{1025}{1024} \frac{4}{3} \frac{6}{5} \frac{8}{7} \frac{112}{111} \frac{16}{15} \frac{122}{121}<2
$$

Subcase 3 (iii): Assume that $7|s, 13| s$, and $103 \mid s$. Then $31 \mid s$ since

$$
\frac{\sigma *(3 \cdot 5 \cdot 7 \cdot 13 \cdot 31)}{3 \cdot 5 \cdot 7 \cdot 13 \cdot 31}>2
$$

If $F(7)$ contains any prime factors other than 7 or 13 , then the least such factor is of the form $13 h-1$, where all odd prime factors of h are ≥ 127. Other than 103, the least prime of this form is $13 \cdot 2^{7}-1=1663$. Therefore,

$$
G(7) \leq \frac{8}{7} \frac{14}{13} \frac{832}{831}
$$

and the left-hand side of (4) is

$$
\leq \frac{1025}{1024} \frac{4}{3} \frac{6}{5} \frac{8}{7} \frac{14}{13} \frac{832}{831} \frac{122}{121}<2
$$

Subcase $3(i v):$ Assume that $7|s, 13| s$, and $103 \mid s$. Then $127 \nmid s$ since

$$
\frac{\sigma *(3 \cdot 5 \cdot 7 \cdot 13 \cdot 103 \cdot 127)}{3 \cdot 5 \cdot 7 \cdot 13 \cdot 103 \cdot 127}>2
$$

The least prime of the form $103 h-1$ is $103 \cdot 8-1=823$. Therefore,

$$
G(7) \leq \frac{8}{7} \frac{14}{13} \frac{104}{103} \frac{412}{411}
$$

UNITARY PERFECT NUMBERS WITH SQUAREFREE ODD PART

and the right－hand side of（4）is

$$
\leq \frac{1025}{1024} \frac{4}{3} \frac{6}{5} \frac{8}{7} \frac{14}{13} \frac{104}{103} \frac{412}{411} \frac{3072}{3071}<2
$$

References

1．M．V．Subbarao．＂Are There an Infinity of Unitary Perfect Numbers？＂Amer． Math．Monthly 77 （1970）：389－390．
2．M．V．Subbarao \＆L．J．Warran．＂Unitary Perfect Numbers．＂Canad．Math． BuてZ． 9 （1966）：147－153；MR 33 非3994．
3．C．R．Wall．＂A New Unitary Perfect Number．＂Notices Amer．Math．Soc． 16 （1969）： 825.
4．C．R．Wall．＂The Fifth Unitary Perfect Number．＂Canad．Math．Bull． 18 （1975）：115－122；MR 51 非12690．
5．C．R．Wall．＂On the Largest Odd Component of a Unitary Perfect Number．＂ Fibonacci Quarterly 25．4（1987）：312－316．

