ALMOST UNIFORM DISTRIBUTION OF THE FIBONACCI SEQUENCE

Eliot Jacobson

Ohio University, Athens, OH 45701
(Submitted August 1987)
Let $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}(n \geq 2)$ denote the sequence of Fibonacci numbers. For an integer $m>1$, recall that (F_{n}) is uniformly distributed modulo m if all residues modulo m occur with the same frequency in any period (see [2], [4]). This happens precisely when $m=5^{k}$ with $k>0$, in which case (F_{n}) has (shortest) period of length $4 \cdot 5^{k}$, and each residue occurs four times (see [1], [3]). In this paper we study moduli with more complex distributions.

For any $r, 0 \leq r<m$, denote by $v(r)$ the number of times r occurs as a residue in one (shortest) period of $F_{n}(\bmod m)$. If m is a power of 5 , then $v(r)=$ 4 for all r. However, if $m=11$, then the period of $F_{n}(\bmod 11)$ is $0,1,1,2$, $3,5,8,2,10,1$, so that $\nu(r)$ takes on four different values.

Definition: For an integer $m>1,\left(F_{n}\right)$ is almost uniformly distributed modulo m [notation: $\left(F_{n}\right)$ AUD $(\bmod m)$] if $v(r)$ assumes exactly two values for $0 \leq r<m$.

In this paper we describe four infinite sequences of AUD moduli, along with describing the function V precisely for these moduli. Our proof makes use of a recent result of Velez [2], which we state here for the reader's convenience.

Lemma: For any integer $s \geq 0$, the sequence

$$
F_{s+4 q}, q=0,1, \ldots, 5^{k}-1,
$$

consists of a complete residue system modulo 5^{k}.
Main Theorem: $\left(F_{n}\right)$ is AUD (mod m) for $m \in\left\{2 \cdot 5^{k}, 4 \cdot 5^{k}, 3 \cdot 5^{k}, 9 \cdot 5^{k}: k \geq 0\right\}$. For these moduli, the following data appertain:

Modulus	Period	Distribution
2	3	$\nu(0)=1, \quad \nu(1)=2$
4	6	$\nu(0)=\nu(2)=\nu(3)=1, \nu(1)=3$
$2 \cdot 5^{k}, k>0$	$3 \cdot 4 \cdot 5^{k}$	$v(r)=\left\{\begin{array}{lll} 4 & r & \text { is even } \\ 8 & r & \text { is odd } \end{array}\right.$
$4 \cdot 5^{k}, k>0$	$3 \cdot 4 \cdot 5^{k}$	$v(r)=\left\{\begin{array}{lll}2 & r^{\prime} \neq 1 & (\bmod 4) \\ 6 & r \equiv 1 & (\bmod 4)\end{array}\right.$
$3 \cdot 5^{k}, k \geq 0$	$8 \cdot 5^{k}$	$v(r)=\left\{\begin{array}{llll}2 & r \equiv 0 & (\bmod 3) \\ 3 & r \not \equiv 0 & (\bmod 3)\end{array}\right.$
$9 \cdot 5^{k}, k \geq 0$	$3 \cdot 8 \cdot 5^{k}$	$v(r)=\left\{\begin{array}{lllll} 2 & r \not \equiv 1, & 8 & (\bmod 9) \\ 5 & r \equiv 1, & 8 & (\bmod 9) \end{array}\right.$

Proof: The cases $m=2,3,4,9$ can be checked directly. Assume that $k \geq 1$. Because of the similarity of the proofs of the four cases, we only prove the cases $m=2 \cdot 5^{k}$ and $m=9 \cdot 5^{k}$, leaving the proofs of the remaining cases to the reader.

Case $1 . \quad m=2 \cdot 5^{k}$. As the period of $F_{n}(\bmod m)$ is the least common multiple of its periods modulo 2 and 5^{k}, it is clear that the period is $3 \cdot 4^{\prime k}$.

To compute $\nu(r)$, it suffices, by the Chinese Remainder Theorem, to compute the number of simultaneous solutions to the system

$$
\begin{cases}F_{n} \equiv r_{1} & (\bmod 2) \\ F_{n} \equiv r_{2} & \left(\bmod 5^{k}\right)\end{cases}
$$

with $0 \leq n<3 \cdot 4 \cdot 5^{k}$, for ordered pairs of residues $\left(r_{1}, r_{2}\right)$ with $0 \leq r_{1}<2$ and $0 \leq r_{2}<5^{k}$. Fix r_{2}.

For n in the indicated range, n can be expressed uniquely in the form $n=s$ $+4 q$, with $0 \leq s<4$ and $0 \leq q \leq 3 \cdot 5^{k}-1$. By the lemma, for fixed s, there is a unique q_{1} with $0 \leq q_{1} \leq 5^{k}-1$ such that

$$
F_{s+4 q_{1}} \equiv r_{2}\left(\bmod 5^{k}\right)
$$

Then, also,

$$
F_{s+4\left(q_{1}+5^{k}\right)} \equiv r_{2}\left(\bmod 5^{k}\right)
$$

and

$$
F_{s+4\left(q_{1}+2 \cdot 5^{k}\right)} \equiv r_{2}\left(\bmod 5^{k}\right)
$$

because F_{n} has period $4 \cdot 5^{k}$ modulo 5^{k}. Now observe that

$$
\begin{aligned}
& s+4 q_{1} \equiv s+q_{1}(\bmod 3) \\
& s+4\left(q_{1}+5^{k}\right) \equiv s+q_{1}+(-1)^{k}(\bmod 3) \\
& s+4\left(q_{1}+2 \cdot 5^{k}\right) \equiv s+q_{1}+(-1)^{k+1}(\bmod 3)
\end{aligned}
$$

and these are incongruent modulo 3. Thus, for fixed s, there are exactly two solutions q to the system

$$
\left\{\begin{aligned}
F_{s+4 q} & \equiv 1 \\
F_{s+4 q} & \equiv r_{2}
\end{aligned} \quad(\bmod 2)\right.
$$

and exactly one solution q of the system

$$
\left\{\begin{aligned}
F_{s+4 q} & \equiv 0 \\
F_{s+4 q} & \equiv r_{2}
\end{aligned} \quad(\bmod 2)\right.
$$

with $0 \leq q \leq 3 \cdot 5^{k}-1$.
Now s has four possible values, so that there are exactly eight solutions of

$$
\begin{cases}F_{n} \equiv 1 & (\bmod 2) \\ F_{n} \equiv r_{2} & \left(\bmod 5^{k}\right)\end{cases}
$$

and exactly four solutions of

$$
\begin{cases}F_{n} \equiv 0 & (\bmod 2) \\ F_{n} \equiv r_{2} & \left(\bmod 5^{k}\right)\end{cases}
$$

with $0 \leq n \leq 3 \cdot 4 \cdot 5^{k}-1$. This translates via the Chinese Remainder Theorem to the stated distribution.

The method of proof is now clear, and we provide few details in Case 2.
Case 2. $m=9 \cdot 5^{k}$. The period is $\operatorname{lcm}\left(24,4 \cdot 5^{k}\right)=8 \cdot 3 \cdot 5^{k}$. Express $n=$ $s+\overline{4 q}$, where $0 \leq s \leq 3,0 \leq q \leq 6 \cdot 5^{k}-1$. For fixed s and residue r_{2} (mod 5^{k}), there is a unique q_{1} such that $F_{s}+4 q_{1} \equiv r_{2}\left(\bmod 5^{k}\right)$ with $0 \leq q_{1} \leq 5^{k}-1$. Now the Fibonacci numbers have period $0,1,1,2,3,5,8,4,3,7,1,8,0,8$, $8,7,6,4,1,5,6,2,8,1(\bmod 9)$ of length 24 , so we consider the subscripts $s+4\left(q_{1}+t \cdot 5^{k}\right)(\bmod 24)$ for $t=0,1,2,3,4,5$. A straightforward
calculation yields that these are congruent (in some order) to $s, s+4, s+8$, $s+12, s+16, s+20(\bmod 24)$. Thus, for fixed s, r_{2} there are 6 values of $q, 0 \leq q \leq 6 \cdot 5^{k}-1$, with $F_{s+4 q} \equiv r_{2}\left(\bmod 5^{k}\right)$, (namely, $q=q_{1}+t \cdot 5^{k}, 0 \leq t$ $\leq 5)$. Now, for this sequence of $q^{\prime} s$, we have that:

$$
\begin{aligned}
& \underline{s=0} \Rightarrow F_{s+4 q} \equiv 0,3,3,0,6,6(\bmod 9) \\
& \underline{s=1} \Rightarrow F_{s+4 q} \equiv 1,5,7,8,4,2(\bmod 9) \\
& \underline{s=2} \Rightarrow F_{s+4 q} \equiv 1,8,1,8,1,8(\bmod 9) \\
& \underline{s=3} \Rightarrow F_{s+4 q} \equiv 2,4,8,7,5,1(\bmod 9)
\end{aligned}
$$

Again, the stated distribution follows from the Chinese Remainder Theorem. \square
Remarks: It is clear from the proof that the given method will decide the distribution of any family of the form $m \cdot 5^{k}$, where $5 / / m$, once it is known explicitly modulo m. However, there does not appear to be a general theorem valid for all m that will let one forgo this tedium.

It is natural to ask if the list in the Theorem is complete. A computer search of moduli $m \leq 1000$ indicates this is so. However, the converse proof quickly reduces to showing that a modulus m where v takes on only the values 0 and f for that m does not exist. The question of whether there exists a prime $p>7$ such that only the frequencies 0 and f occur mod p is a well-known open problem.

References

1. R. T. Bumby. "A Distribution Property for Linear Recurrence of the Second Order." Proc. Amer. Math. Soc. 50 (1975):101-106.
2. L. Kuipers \& H. Niederreiter. Uniform Distribution of Sequences. New York: Wiley-Interscience, 1974.
3. W. Narkiewicz. "Uniform Distribution of Sequences of Integers in Residue Classes." In Lecture Notes in Mathematics, Vol. 1087. New York: SpringerVerlag, 1984.
4. I. Niven. "Uniform Distribution of Sequences of Integers." Trans. Amer. Math. Soc. 98 (1961):52-61.
5. W. Y. Velez. "Uniform Distribution of Two-Term Recurrence Sequences." Trans. Amer. Math. Soc. 301 (1987):37-45.
