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Let FQ = 0, Fi = 1, and Fn = Fn_i + Fn_2 (n - 2) denote the sequence of Fi-
bonacci numbers. For an integer m > 1, recall that (Fn) is uniformly dis-
tributed modulo m if all residues modulo m occur with the same frequency in any 
period (see [2], [4]). This happens precisely when m = 5k with k > 0, in which 
case (Fn) has (shortest) period of length 4 • 5k, and each residue occurs four 
times (see [1]5 [3])., In this paper we study moduli with more complex 
distributions. 

For any r, 0 < r < m, denote by v(p) the number of times r occurs as a res-
idue in one (shortest) period of Fn (mod m). If m is a power of 5, then v(p) = 
4 for all p. However, if m = 11, then the period of Fn (mod 11) is 0, 1* 1> 2, 
3, 5, 85 2, 10, 1, so that v(p) takes on four different values. 

Definition: For an integer m > 1, (Fn) is almost uniformly distributed modulo m 
[notation: (Fn) AUD (mod m)] if V(P) assumes exactly two values for 0 < r < m. 

In this paper we describe four infinite sequences of AUD moduli, along with 
describing the function v precisely for these moduli. Our proof makes use of a 
recent result of Velez [2], which we state here for the reader's convenience. 

Lemma: For any integer s > 0, the sequence 

Fs + hq, q = 0, 1, ..., 5k - 1, 

consists of a complete residue system modulo 5 . 

Main Theorem: (Fn) is AUD (mod m) for m e {2 • 5k, 4 - 5k, 3 • 5k, 9 • 5k: k > 0}. 
For these moduli, the following data appertain: 

Modulus Period Distribution 

2 3 v(0) = 1, v(l) = 2 

4 6 v(0) = v(2) = v(3) = 1, v(l) = 3 

rk 7 rt o / nk / \ (4 r is e\ 
5K, k > 0 3 • 4 • 5K v(p) = < 0 

(8 P |s oc 
2 p' ̂  1 (mod 4) 

2 

4 • 5k, k > 0 3 • 4 • 5k v(r) = 

even 
}dd 

3 • 5k, k > 0 8 • 5k v(p) 

6 p = 1 (mod 4) 

2 P = 0 (mod 3) 
3 P ^ 0 (mod 3) 

9-5*. IfcsO 3.8-5* v(r) - ^ ^ }' J ^ 9) 
1 ̂  ^ = 1, 8 (mod 9) 

Proof: The cases m = 2, 3, 4, 9 can be checked directly. Assume that k > 1. 
Because of the similarity of the proofs of the four cases, we only prove the 
cases 77? = 2 • 5k and 777 = 9 • 5k, leaving the proofs of the remaining cases to the 
reader. 

•{ 
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Case 1. m = 2 • 5k. As the period of Fn (mod m) is the least common multi-
ple of its periods modulo 2 and 5k, it is clear that the period is 3 • 4 • 5^. 

To compute V ( P ) , it suffices, by the Chinese Remainder Theorem, to compute 
the number of simultaneous solutions to the system 

Fn = PX (mod 2) 

Fn = P 2 (mod 5k) 

with 0 < n < 3 • 4 • 5k
 9 for ordered pairs of residues (r1, r2) with 0 < i51 < 2 

and 0 < P2 < 5fe. Fix r2. 
For n in the indicated range, n can be expressed uniquely in the form n - s 

+ 4<7, with 0 < s < 4 and 0 < ^ < 3 » 5 ? < : - l . By the lemma, for fixed s, there 
is a unique <y, with 0 < q-, < 5 - 1 such that 

Then, also, 

^ + 4(^+5*) E p2 ( m o d 5 ^ 
and 

^8 + ̂ ( ^ + 2-5*) E r 2 ( m o d 5?C)' 

because Fn has period 4 • 5k modulo 5k. Now observe that 

s + bql E s + q-^ (mod 3) , 

s + 4((71 + 5?c) E s + qY + (-1)^ (mod 3), 

s + 4 ( ^ + 2- 5k) = s + qY + (~l)k+1 (mod 3), 

and these are incongruent modulo 3. Thus, for fixed s, there are exactly two 
solutions q to the system 

Fs + hq E 1 (mod 2) 
Fs + hq E ^2 (mod 5k) 

and exactly one solution q of the system 
Fs + hq E 0 (mod 2) 

^s + 4q E ^2 (mod ^ 

with 0 < ^ < 3 - 5 k - l o 
Now s has four possible values, so that there are exactly eight solutions 

of 
' Fn E 1 (mod 2) 

Fn E p2 (mod 5k) 

and exactly four solutions of 

Fn = 0 (mod 2) 

Fn = r2 (mod 5fe) 

with 0 < n < 3• 4 • 5^ - 1. This translates via the Chinese Remainder Theorem 
to the stated distribution. 

The method of proof is now clear, and we provide few details in Case 2. 

Case 2. m = 9 • 5fe . The period is lcm(24, 4 • 5k) = 8 • 3 • 5k. Express n = 
s + kq> where 0<s<3, 0<q<6*5^ - 1. For fixed s and residue r2 (mod 
5k) , there is a unique q^ such that F8 + i+q = r2 (mod 5k) with 0 < q •, < 5k - 1. 
Now the Fibonacci numbers have period 0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8,0, 8, 
8, 7, 6, 4, 1, 5, 6, 2, 8, 1 (mod 9) of length 24, so we consider the sub-
scripts s + ^(ql + t • 5k) (mod 24) for t = 0, 1, 2, 3, 4, 5. A straightforward 
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c a l c u l a t i o n y i e l d s t h a t t h e s e a r e congruent ( i n some o rde r ) t o s , s + 4 , s + 8, 
s + 12, s + 16, s + 20 (mod 2 4 ) . Thus, for f ixed s, r~ t h e r e a r e 6 v a l u e s of 
q90<q<6»5k-l9 w i th Fs + hq = r2 (mod 5k) , (namely, q = q l + t * 5 k , 0 < t 
< 5) . Now, for t h i s sequence of q% s 9 we have t h a t : 

s = 0 => Fs + i+(? E 0, 3 , 3 , 0, 6, 6 (mod 9) 

s = 1 => Fs + Lf(? E 1, 5 , 7, 8, 4 , 2 (mod 9) 

s = 2 => FS + LK? E 1, 8, 1, 8, 1, 8 (mod 9) 

s = 3 => FS + LK? E 2, 4, 8, 7, 5, 1 (mod 9) 

Again, the stated distribution follows from the Chinese Remainder Theorem. D 

Remarks: It is clear from the proof that the given method will decide the dis— 
tribution of any family of the form m » 5k , where 5j/rz, once it is known expli-
citly modulo 777. However, there does not appear to be a general theorem valid 
for all 777 that will let one forgo this tedium. 

It is natural to ask if the list in the Theorem is complete. A computer 
search of moduli m < 1000 indicates this is so. However, the converse proof 
quickly reduces to showing that a modulus m where v takes on only the values 0 
and / for that 777 does not exist. The question of whether there exists a prime 
p > 7 such that only the frequencies 0 and f occur mod p is a well-known open 
problem. 
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