ALMOST UNIFORM DISTRIBUTION OF THE FIBONACCI SEQUENCE

Eliot Jacobson

Ohio University, Athens, OH 45701 (Submitted August 1987)

Let $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ $(n \ge 2)$ denote the sequence of Fibonacci numbers. For an integer m > 1, recall that (F_n) is uniformly distributed modulo m if all residues modulo m occur with the same frequency in any period (see [2], [4]). This happens precisely when $m = 5^k$ with k > 0, in which case (F_n) has (shortest) period of length $4 \cdot 5^k$, and each residue occurs four times (see [1], [3]). In this paper we study moduli with more complex distributions.

For any r, $0 \le r < m$, denote by v(r) the number of times r occurs as a residue in one (shortest) period of $F_n \pmod{m}$. If m is a power of 5, then v(r) = 4 for all r. However, if m = 11, then the period of $F_n \pmod{11}$ is 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, so that v(r) takes on four different values.

Definition: For an integer m > 1, (F_n) is almost uniformly distributed modulo m [notation: (F_n) AUD (mod m)] if v(r) assumes exactly two values for $0 \le r < m$.

In this paper we describe four infinite sequences of AUD moduli, along with describing the function v precisely for these moduli. Our proof makes use of a recent result of Velez [2], which we state here for the reader's convenience.

Lemma: For any integer $s \ge 0$, the sequence

 F_{s+4q} , $q = 0, 1, \ldots, 5^k - 1$,

consists of a complete residue system modulo 5^k .

Main Theorem: (F_n) is AUD (mod m) for $m \in \{2 \cdot 5^k, 4 \cdot 5^k, 3 \cdot 5^k, 9 \cdot 5^k; k \ge 0\}$. For these moduli, the following data appertain:

Modulus	Period	Distribution
2	3	v(0) = 1, v(1) = 2
4	6	v(0) = v(2) = v(3) = 1, v(1) = 3
$2 \cdot 5^k, \ k > 0$	3•4•5 ^k	$v(r) = \begin{cases} 4 & r \text{ is even} \\ 8 & r \text{ is odd} \end{cases}$
$4 \cdot 5^k, k > 0$	3 • 4 • 5 ^k	$v(r) = \begin{cases} 2 & r' \notin 1 \pmod{4} \\ 6 & r \notin 1 \pmod{4} \end{cases}$
$3 \cdot 5^k, \ k \ge 0$	8 • 5 ^k	$\nu(r) = \begin{cases} 2 & r \equiv 0 \pmod{3} \\ 3 & r \notin 0 \pmod{3} \end{cases}$
$9 \cdot 5^k, \ k \ge 0$	$3 \cdot 8 \cdot 5^k$	$v(r) = \begin{cases} 2 & r \notin 1, 8 \pmod{9} \\ 5 & r \notin 1, 8 \pmod{9} \end{cases}$

Proof: The cases m = 2, 3, 4, 9 can be checked directly. Assume that $k \ge 1$. Because of the similarity of the proofs of the four cases, we only prove the cases $m = 2 \cdot 5^k$ and $m = 9 \cdot 5^k$, leaving the proofs of the remaining cases to the reader.

1989]

335

<u>Case 1</u>. $m = 2 \cdot 5^k$. As the period of $F_n \pmod{m}$ is the least common multiple of its periods modulo 2 and 5^k , it is clear that the period is $3 \cdot 4 \cdot 5^k$. To compute v(r), it suffices, by the Chinese Remainder Theorem, to compute the number of simultaneous solutions to the system

 $\begin{cases} F_n \equiv r_1 \pmod{2} \\ F_n \equiv r_2 \pmod{5^k} \end{cases}$

with $0 \le n < 3 \cdot 4 \cdot 5^k$, for ordered pairs of residues (r_1, r_2) with $0 \le r_1 < 2$ and $0 \le r_2 < 5^k$. Fix r_2 . For *n* in the indicated range, *n* can be expressed uniquely in the form n = s

For n in the indicated range, n can be expressed uniquely in the form n = s + 4q, with $0 \le s < 4$ and $0 \le q \le 3 \cdot 5^k - 1$. By the lemma, for fixed s, there is a unique q_1 with $0 \le q_1 \le 5^k - 1$ such that

$$F_{s+4q} \equiv r_2 \pmod{5^k}$$
.

Then, also,

and

$$F_{s+4(q_1+5^k)} \equiv r_2 \pmod{5^k}$$

 $F_{s+4(q_1+2\cdot 5^k)} \equiv r_2 \pmod{5^k}$,

because F_n has period $4 \cdot 5^k$ modulo 5^k . Now observe that

$$\begin{split} s &+ 4q_1 \equiv s + q_1 \pmod{3}, \\ s &+ 4(q_1 + 5^k) \equiv s + q_1 + (-1)^k \pmod{3}, \\ s &+ 4(q_1 + 2 \cdot 5^k) \equiv s + q_1 + (-1)^{k+1} \pmod{3}, \end{split}$$

and these are incongruent modulo 3. Thus, for fixed s, there are exactly two solutions q to the system

 $\begin{cases} F_{s+4q} \equiv 1 \pmod{2} \\ F_{s+4q} \equiv r_2 \pmod{5^k} \end{cases}$

and exactly one solution q of the system

 $\begin{cases} F_{s+4q} \equiv 0 \pmod{2} \\ F_{s+4q} \equiv r_2 \pmod{5^k} \end{cases}$

with $0 \le q \le 3 \cdot 5^k - 1$.

Now \boldsymbol{s} has four possible values, so that there are exactly eight solutions of

 $\begin{cases} F_n \equiv 1 \pmod{2} \\ F_n \equiv r_2 \pmod{5^k} \end{cases}$

and exactly four solutions of

 $\begin{cases} F_n \equiv 0 \pmod{2} \\ F_n \equiv r_2 \pmod{5^k} \end{cases}$

with $0 \le n \le 3 \cdot 4 \cdot 5^k - 1$. This translates via the Chinese Remainder Theorem to the stated distribution.

The method of proof is now clear, and we provide few details in Case 2.

<u>Case 2</u>. $m = 9 \cdot 5^k$. The period is $lcm(24, 4 \cdot 5^k) = 8 \cdot 3 \cdot 5^k$. Express n = s + 4q, where $0 \le s \le 3$, $0 \le q \le 6 \cdot 5^k - 1$. For fixed s and residue $r_2 \pmod{5^k}$, there is a unique q_1 such that $F_{s+4q_1} \equiv r_2 \pmod{5^k}$ with $0 \le q_1 \le 5^k - 1$. Now the Fibonacci numbers have period 0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1 (mod 9) of length 24, so we consider the subscripts $s + 4(q_1 + t \cdot 5^k) \pmod{24}$ for t = 0, 1, 2, 3, 4, 5. A straightforward

[Aug.

calculation yields that these are congruent (in some order) to $s, s + 4, s + 8, s + 12, s + 16, s + 20 \pmod{24}$. Thus, for fixed s, r_2 there are 6 values of $q, 0 \le q \le 6 \cdot 5^k - 1$, with $F_{s+4q} \equiv r_2 \pmod{5^k}$, (namely, $q = q_1 + t \cdot 5^k$, $0 \le t \le 5$). Now, for this sequence of q's, we have that:

$$\underline{s = 0} \implies F_{s+4q} \equiv 0, 3, 3, 0, 6, 6 \pmod{9}$$

$$\underline{s = 1} \implies F_{s+4q} \equiv 1, 5, 7, 8, 4, 2 \pmod{9}$$

$$\underline{s = 2} \implies F_{s+4q} \equiv 1, 8, 1, 8, 1, 8 \pmod{9}$$

$$\underline{s = 3} \implies F_{s+4q} \equiv 2, 4, 8, 7, 5, 1 \pmod{9}$$

Again, the stated distribution follows from the Chinese Remainder Theorem.

Remarks: It is clear from the proof that the given method will decide the distribution of any family of the form $m \cdot 5^k$, where $5 \nmid m$, once it is known explicitly modulo m. However, there does not appear to be a general theorem valid for all m that will let one forgo this tedium.

It is natural to ask if the list in the Theorem is complete. A computer search of moduli $m \le 1000$ indicates this is so. However, the converse proof quickly reduces to showing that a modulus m where v takes on only the values 0 and f for that m does not exist. The question of whether there exists a prime p > 7 such that only the frequencies 0 and f occur mod p is a well-known open problem.

References

- 1. R. T. Bumby. "A Distribution Property for Linear Recurrence of the Second Order." *Proc. Amer. Math. Soc.* 50 (1975):101-106.
- 2. L. Kuipers & H. Niederreiter. Uniform Distribution of Sequences. New York: Wiley-Interscience, 1974.
- 3. W. Narkiewicz. "Uniform Distribution of Sequences of Integers in Residue Classes." In *Lecture Notes in Mathematics*, Vol. 1087. New York: Springer-Verlag, 1984.
- 4. I. Niven. "Uniform Distribution of Sequences of Integers." Trans. Amer. Math. Soc. 98 (1961):52-61.
- 5. W. Y. Velez. "Uniform Distribution of Two-Term Recurrence Sequences." Trans. Amer. Math. Soc. 301 (1987):37-45.

1989]

337