ON THE SCHNIRELMANN DENSITY OF M-FREE INTEGERS

V. Siva Rama Prasad and M. V. S. Bhramarambica
Osmania University, Hyderabad-500 007, India
(Submitted August 1987)

It is well known that a positive integer is said to be r-free ($r \geq 2$) if it contains no $r^{\text {th }}$ power factor greater than 1 . Let Q_{r} denote the set of all $r-$ free integers. If the integers r and k are such that $2 \leq r<k$, an integer of the form $a^{k} b$, where a is any natural number and b is r-free is called a (k, r) integer. The set of all (k, r)-integers is denoted by $Q_{k, p}$. The (k, p)-integers were introduced by Cohen [1] and by Subbarao \& Harris [6], independently, under different notations. Observe that (∞, r)-integers are the r-free integers; therefore, the (k, r)-integers can be considered as generalized r-free integers.

The Schnirelmann density for a set, S, of positive integers is denoted by $D(S)$. That is,

$$
D(S)=\inf _{n \geq 1} \frac{S(n)}{n}
$$

where $S(n)$ is the number of integers in S not exceeding n.
Using computational methods, Rogers [5] proved that $D\left(Q_{2}\right)=53 / 88$. Duncan [2] showed, by elementary methods, that

$$
\begin{equation*}
D\left(Q_{r}\right)>1-\sum_{p} \frac{1}{p^{r}}, \tag{1}
\end{equation*}
$$

in which the summation is over all primes p. Later, Feng \& Subbarao [3] established

$$
\begin{equation*}
D\left(Q_{k, r}\right) \geq a_{k, r} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{k, r}=\zeta(k)\left(1-\sum_{p} \frac{1}{p^{r}}\right)-\frac{1}{k}\left(1-\frac{1}{k}\right)^{k-1} \tag{3}
\end{equation*}
$$

in which $\zeta(k)$ is the Riemann zeta function.
Rieger [4] introduced M-free integers as follows: Suppose M is a set of positive integers with minimal element $r>1$. A positive integer $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ $\ldots p_{t}^{\alpha_{t}}$, where $p_{1}, p_{2}, \ldots, p_{t}$ are distinct primes, is said to be M-free if $\alpha_{i} \notin M$ for $i=1,2, \ldots, t$. The set of all M-free integers is denoted by Q_{M}.

If r, k are integers such that $2 \leq r<k$, write
$A=\{r, r+1, p+2, \ldots\}$,
$B=\{n: n \geq r, n \equiv j(\bmod k)$ for some $j(r \leq j \leq k-1)\}$,
$C=\{r\}$,
$D=\{r, 2 r, 3 r, \ldots\}$.
Then observe that $Q_{A}=Q_{r} ; Q_{B}=Q_{k, r}$, the set of all (k, r)-integers; $Q_{C}=S_{r}$, the set of all semi- - -free integers introduced by Suryanarayana [7]; and $Q_{D}=$ U_{r}, the set of all unitarily r-free integers given by Cohen [1].

The object of this note is to obtain a lower bound for $D\left(Q_{M}\right)$. This bound improves (2) in the case $M=B$. In fact, we prove the following:

Theorem: $D\left(Q_{M}\right) \geq 1-2 \sum_{p}(p-1) \sum_{a \in M} p^{-a-1}$.
Proof: If $Q_{M}(n)$ is the number of integers in Q_{M} not exceeding n, then

$$
\begin{equation*}
Q_{M}(n) \geq n-\sum_{p} \alpha_{M, n}(p) \tag{4}
\end{equation*}
$$

where $\alpha_{M, n}(p)$ is the number of integers $m \leq n$ such that $p^{a \| m}$ for some $a \in M$. To count $\alpha_{M, n}(p)$, for each fixed $\alpha \in M$, we find the number of integers $m \leq n$ with $p^{a} \mid m$ and $p^{a+1} \nmid m$, and the latter number is

$$
\left[n / p^{a}\right]-\left[n / p^{a+1}\right]
$$

so that

$$
\begin{equation*}
\alpha_{M, n}(p)=\sum_{a \in M}\left(\left[\frac{n}{p^{a}}\right]-\left[\frac{n}{p^{a+1}}\right]\right) \leq \sum_{a \in M}\left(1-\frac{1}{p}\right)\left(\left[\frac{n}{p^{a}}\right]+1\right) \tag{5}
\end{equation*}
$$

Now, from (4) and (5), we obtain

$$
Q_{M}(n) \geq n-\sum_{p} \sum_{a \in M}\left(1-\frac{1}{p}\right)\left(\left[\frac{n}{p^{a}}\right]+1\right) \geq n-2 \sum_{p}(p-1) \sum_{a \in M} n \cdot p^{-a-1}
$$

where the sum on the right side is over primes p with $p^{a} \leq n$ for some $a \in M$, which gives

$$
\frac{Q_{M}(n)}{n} \geq 1-2 \sum_{p}(p-1) \sum_{a \in M} p^{-a-1}
$$

Since this is also true when summed over all primes, the theorem follows.
Corollary: For $k>r \geq 2, D\left(Q_{k, r}\right) \geq b_{k, r}$, where

$$
b_{k, r}=1-2 \sum_{p} \frac{p^{k-r}-1}{p^{k}-1}
$$

Proof: Since

$$
\sum_{a \in B} p^{-a-1}=\sum_{m=0}^{\infty} \sum_{j=0}^{k-1} \frac{1}{p^{m k+j+1}}=\frac{p^{k-r}-1}{(p-1)\left(p^{k}-1\right)}
$$

and $Q_{B}=Q_{k, r}$, the Corollary follows from the Theorem.
Remark 1: For any $k>r \geq 2, a_{k, r}<b_{k, r}$. In fact, since

$$
\begin{aligned}
b_{k, r} & =1-2 \sum_{p}\left(\frac{1}{p^{r}}-\frac{1}{p^{k}}\right)\left(1-\frac{1}{p^{k}}\right)^{-1} \\
& =1-2 \sum_{p} \frac{1}{p^{r}}\left(1+\frac{1}{p^{k}}+\frac{1}{p^{2 k}}+\cdots\right)+2 \sum_{p} \frac{1}{p^{k}}\left(1-\frac{1}{p^{k}}\right)^{-1} \\
& =1-2 \sum_{p} \frac{1}{p^{r}}-2 \sum_{p} \frac{1}{p^{r+k}}\left(1-\frac{1}{p^{k}}\right)^{-1}+2 \sum_{p} \frac{1}{p^{k}}\left(1-\frac{1}{p^{k}}\right)^{-1} \\
& =\left(1-\sum_{p} \frac{1}{p^{r}}\right)-\sum_{p} \frac{1}{p^{r}}+2 \sum_{p}\left(1-\frac{1}{p^{r}}\right) \frac{1}{p^{k}-1}
\end{aligned}
$$

In view of (3), it suffices to show that

$$
\begin{aligned}
& 2 \sum_{p}\left(1-\frac{1}{p^{r}}\right) \frac{1}{p^{k}-1}>\sum_{p} \frac{1}{p^{r}}+\left(1-\sum_{p} \frac{1}{p^{r}}\right)\left(\sum_{n=2}^{\infty} \frac{1}{n^{k}}\right) \\
& =\sum_{n=2}^{\infty} \frac{1}{n^{k}}+\left(\sum_{p} \frac{1}{p^{r}}\right)\left(1-\sum_{n=2}^{\infty} \frac{1}{n^{k}}\right),
\end{aligned}
$$

and this follows if we prove that

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{1}{n^{k}}-2 \sum_{p}\left(1-\frac{1}{p^{r}}\right) \frac{1}{p^{k}-1}<\left(\sum_{n=2}^{\infty} \frac{1}{n^{k}}-1\right)\left(\sum_{p} \frac{1}{p^{r}}\right) \tag{6}
\end{equation*}
$$

If $\alpha_{n}=-1$ or 1 , according as $n=1$ or $n>1$, then $b_{n}=n^{k-r}$ or 0 , according as n is a prime or not and $c_{n}=\left[\left(n^{r}-1\right) /\left(n^{k}-1\right)\right] b_{n}$, so the inequality in (6) can be written as

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{a_{n}}{n^{k}}-2 \sum_{n=2}^{\infty} \frac{c_{n}}{n^{k}}<\left(\sum_{n=1}^{\infty} \frac{a_{n}}{n^{k}}\right)\left(\sum_{n=1}^{\infty} \frac{b_{n}}{n^{k}}\right) \tag{7}
\end{equation*}
$$

But, by the multiplication of Dirichlet series, the right side of (7) is:

$$
\sum_{n=1}^{\infty} \frac{d_{n}}{n^{k}} \text {, where } d_{n}= \begin{cases}0 & \text { if } n=1, \\ -p^{k-p} & \text { if } n=p, \text { a prime } \\ \sum_{p \mid n} p^{k-r} & \text { otherwise } \\ p<n\end{cases}
$$

Since $\alpha_{n}>a_{n}-2 c_{n}$ for all n, the inequality (7) holds; hence

$$
a_{k, r}<b_{k, r}
$$

Thus, the Corollary improves (2). However, the inequality (1) gives a better lower bound for $D\left(Q_{r}\right)$ than the one obtained from the Theorem.

Remark 2: In the special cases of $Q_{C}=S_{r}$ and $Q_{D}=U_{r}$, defined earlier, the Theorem gives

$$
D\left(S_{r}\right) \geq 1-2 \sum_{p} \frac{p-1}{p^{r+1}} \text { and } D\left(U_{r}\right) \geq 1-2 \sum_{p} \frac{p-1}{p\left(p^{r}-1\right)} .
$$

The authors are grateful to the referee for helpful comments.

References

1. E. Cohen. "Some Sets of Integers Related to the K-Free Integers." Acta Sci. Math. (Szeged) 22 (1961):223-233.
2. R. L. Duncan. "The Schnirelmann Density of the k-Free Integers." Proc. Amer. Math. Soc. 16 (1965):1090-1091.
3. Y. K. Feng \& M. V. Subbarao. "On the Density of (k, r)-Integers." Pacific J. Math. 38 (1971):613-618.
4. G. J. Rieger. "Einige Verteilungsfragen mit K-Leeren Zahlen, r-Zahlen und primzahlen." J. Reine. Angew. Math. 262/263 (1973):189-193.
5. K. Rogers. "The Schnirelmann Density of Squarefree Integers." Proc. Amer. Math. Soc. 15 (1964):515-516.
6. M. V. Subbarao \& V. C. Harris. "A New Generalization of Ramanujan's Sum." J. London Math. Soc. 41 (1966):595-604.
7. D. Suryanarayana. "Semi-k-Free Integers." Elem. Math. 26 (1971):39-40.
[Aug.
