A DIOPHANTINE EQUATION WITH GENERALIZATION

Sahib Singh

Clarion University of Pennsylvania, Clarion, PA 16214
(Submitted August 1987)
In [1] the authors showed that the diophantine equation $N b^{2}=c^{2}+N+1$ does not admit any integral solution except for the trivial case $N=-1$ and $b=c=0$. At the end of the proof, a conjecture about its generalization was made, namely that

$$
\begin{equation*}
N b^{2}=c^{2}+N(4 k+1)+1 \tag{1}
\end{equation*}
$$

would not yield any nontrivial solutions.
In this paper we give a new proof of the original equation. We also prove that (1) does not have a solution when N is a positive integer. A counterexample is given to show that there may exist infinitely many solutions of the general equation when N takes negative values, so the conjecture in (1) was not correct.

Omitting the trivial case when $b=c=0$, we show that

$$
N=\frac{c^{2}+1}{b^{2}-1}
$$

is not an integer for all integral values of b and c. Suppose that N is an integer. We consider two cases. Suppose b is even. This means that $b^{2}-1 \equiv$ 3 (mod 4), which implies that there exists at least one prime $p \equiv 3(\bmod 4)$ such that p divides $b^{2}-1$. This in turn leads to $c^{2}+1 \equiv 0(\bmod p)$, which is impossible since -1 is a quadratic nonresidue ($\bmod p$). If b is odd, then $b^{2}-1 \equiv 0(\bmod 8)$, so $c^{2}+1=0(\bmod 8)$, which is also impossible.

To show that (1) has solutions when N is negative, take $N=-2$. The equation becomes $8 k-2 b^{2}=c^{2}-1$, which has infinitely many solutions given by

$$
b=2 m, \quad c=2 n+1, \quad \text { and } k=m^{2}+\frac{n(n+1)}{2},
$$

where m, n are arbitrary integers. The reader can easily generate infinitely many solutions by selecting other specific negative values of N.

Theorem: The diophantine equation $N b^{2}=c^{2}+N(4 k+1)+1$ does not admit any solution when $N>0$.

Proof: We consider five cases:

1. Let $N \equiv 3(\bmod 4)$. There is a prime factor. p of N such that $p \equiv 3$ (mod 4). This implies $c^{2}+1 \equiv 0(\bmod p)$, which is impossible.
2. $N \equiv 1(\bmod 4)$. Let $N=4 t+1$ with $t \geq 0$. The equation becomes
$(4 t+1) b^{2}=c^{2}+4 M+2$,
where $M=4 t k+t+k$. This equation is solvable only if the congruence $b^{2}-c^{2} \equiv 2(\bmod 4)$ is solvable. But since $b^{2}-c^{2} \equiv 0,1,3(\bmod 4)$ for all possible choices of b and $c, b^{2}-c^{2} \equiv 2(\bmod 4)$ is not solvable.
3. $N \equiv 0(\bmod 4)$. This implies $c^{2}+1 \equiv 0(\bmod 4)$, which is impossible.
4. $N \equiv 2(\bmod 8)$. Let $N=8 t+2$ with $t \geq 0$. The equation becomes
$(8 t+2) b^{2}=c^{2}+(8 t+2)(4 k+1)+1$,
which implies $2 b^{2}-c^{2} \equiv 3(\bmod 8)$ is solvable. Since $x^{2} \equiv 0,1,4(\bmod 8)$ for all integers $x, 2 b^{2}-c^{2} \equiv 0,1,2,4,6,7(\bmod 8)$; thus, $2 b^{2}-c^{2} \equiv 3$ (mod 8) is not solvable.
5. $N \equiv 6(\bmod 8)$. Let $N=8 t+6=2(4 t+3)$. Then N contains a prime factor p, where $p \equiv 3$ (mod 4). Thus, the solution of the equation is not possible for the reason discussed in Case 1 above, and the proof is complete.

Acknowledgment
The author wishes to thank the referee for suggestions that led to an improved presentation of this paper.

Reference

1. David A. Anderson \& Milion W. Loyer. "The Diophantine Equation $N b^{2}=c^{2}+$ $N+1 . "$ Fibonacci Quarteriy 17.1 (1979):69-70.
