A COMBINATORIAL PROBLEM THAT AROSE IN BIOPHYSICS

Doron Zeilberger

Drexel University, Philadelphia, PA 19104 (Submitted December 1987)

The purpose of this note is to prove the following result that was conjectured by T. L. Hill ([1], [2], p. 148) in the course of his investigations of the "surface" properties of some long multi-stranded polymers.

Theorem: Let s be a positive integer, and for any nonnegative integer m, let R(m) be the number of solutions, in *integers* (m_1, \ldots, m_s) of the system

$$m_1 + \dots + m_s = 0, \tag{1a}$$

$$|m_1| + \dots + |m_s| = 2m.$$
 (1b)

Then,

Q

$$(\rho): = \sum_{m=0}^{\infty} R(m) \rho^{m} = (1 - \rho)^{-(s-1)} \sum_{k=0}^{s-1} {\binom{s-1}{k}}^{2} \rho^{k}.$$

Proof: It is readily seen that R(m) is the coefficient of $\rho^m t^0$ in

$$\left[\sum_{k=-\infty}^{\infty} t^{k} \rho^{|k|/2}\right]^{s} = \left[\rho^{1/2} t^{-1} / (1 - \rho^{1/2} t^{-1}) + 1 + \rho^{1/2} t / (1 - \rho^{1/2} t)\right]^{s}$$
(2)
= $(1 - \rho)^{s} (1 - \rho^{1/2} t)^{-s} (1 - \rho^{1/2} t^{-1})^{-s}$.

Thus, $Q(\rho)$ is the coefficient of t^0 in the right side of (2). Expanding the last two terms in the right side of (2) by Newton's binomial formula, and collecting the coefficient of t^0 , we get

$$Q(\rho) = (1 - \rho)^{s} \sum_{k=0}^{\infty} {\binom{s+k-1}{s-1}}^{2} \rho^{k}.$$
(3)

Using Euler's transformation for hypergeometric series (e.g., [3], Th. 21, p. 60), (3) can be expressed as the right-hand side of the Theorem. \Box

The same method of proof can be applied to treat the more general problem where the 0 at the left side of (la) is replaced by a general integer i.

References

- T. L. Hill. "Effect of Fluctuating Surface Structure and Free Energy on the Growth of Linear Tubular Aggregates." *Biophysical J.* 49 (1986):1017-1031.
- T. L. Hill. Linear Aggregation Theory in Cell Biology. New York: Springer-Verlag, 1987.
- 3. Earl D. Rainville. Special Functions. New York: Chelsea, 1971.

372