A BOX FILLING PROBLEM

Amitabha Tripathi State University of New York at Buffalo (Submitted January 1988)

1. Introduction

For an arbitrary but fixed integer b > 1, consider the set of ordered pairs $S_b = \{(i, a_i): 0 \le i \le b - 1, a_i \text{ equals the number of occurrences of } i \text{ in the sequence } a_0, a_1, \ldots, a_{b-1}\}$. A complete solution for S_b is given explicitly in terms of b. It is shown that there is a unique solution for each b > 6 and for b = 5, that there are two solutions for b = 4, and that there is none for b = 2, 3, or 6.

Let b be an arbitrary but fixed integer, b > 1. We wish to determine, whenever possible, the integers a_i ($0 \le i \le b - 1$), where a_i denotes the number of occurrences of i in the lower row of boxes in the table below.

0	1	2	 i	9 ¢ p	b - 1
a ₀	<i>a</i> ₁	a ₂	 a _i		a _{b-1}

This may be viewed as a problem in determining all possible sets whose members are functions that satisfy a special property. It is easy to see that the case b = 2 gives no solution; henceforth, we shall assume that $b \ge 3$. It is convenient to consider the cases b > 6 and $3 \le b \le 6$ separately.

2. The Case b > 6

It is clear from the definition of each a_i , that $a_0 \neq 0$. Thus, the set $T_b = \{a_i : a_i \neq 0\}$ is nonempty. In fact, $|T_b| = b - a_0$. Since a_i boxes are filled by i and since each box is necessarily filled by an integer at most b - 1, we have

$$\sum_{0 \le i \le b-1} a_i = b.$$

Define the set $T_{0,b} = T_b - \{a_0\}$. Clearly,

 $|T_{0,b}| = b - a_0 - 1$ and $\sum a_i = b - a_0$.

Since each member of $T_{0,b}$ is at least 1, it follows that $T_{0,b}$ consists of $(b - a_0 - 2)$ 1's and one 2.

If $a_0 = 1$, $T_{0,b}$ would consist of (b - 3) l's and one 2, and T_b would consist of (b - 2) l's and one 2. This is impossible since the boxes are being filled by 0, 1, and 2, while $a_1 = b - 2 > 4$.

If $a_0 = 2$, $T_{0,b}$ would consist of (b - 4) 1's and one 2, and T_b would consist of (b - 4) 1's and two 2's. This, too, is impossible since the boxes are being occupied by 0, 1, and 2, while $a_1 = b - 4 > 2$.

1989]

465

(*)

A BOX FILLING PROBLEM

Thus, $a_0 \ge 3$ and $a_A = 1$ where $A = a_0$. Hence,

$$T_b = \{a_0, a_1 = b - a_0 - 2, a_2 = 1, a_A = 1\}.$$

But $|T_b| = b - a_0 = 4$ implies that $a_0 = b - 4$ and the unique solution in this case is given in the table below.

0	1	2	3		b - 5	<i>b</i> - 4	b - 3	b - 2	b - 1
b - 4	2	1	0	• • •	0	1	0	0	0

The Case $b \leq 6$ 3.

By repeating the argument in the case b > 6 until (*), if $a_0 \neq 1$ or 2, we would have $|T_b| = b - a_0 = 4$ and so $b = a_0 + 4 \ge 7$. Hence, $a_0 = 1$ or 2. If $a_0 = 1$, T_b would consist of (b - 2) 1's and one 2. Since all the boxes are being occupied by 0, 1, and 2, we must have $b - 2 \le 2$. If b = 3, we have $a_0 = a_1 = a_2 = 1$, which does not give a solution. If b = 4, we have $a_0 = 1$, $a_1 = 2$, $a_2 = 1$, which does give a solution. If $a_0 = 2$, T_b would consist of (b - 4) 1's and two 2's. Since all of the boxes are filled by 0, 1, and 2, we must have $b - 4 \le 2$.

boxes are filled by 0, 1, and 2, we must have $b - 4 \le 2$. If b = 4, we have $a_0 = 2$, $a_1 = 0$, $a_2 = 2$, which gives a solution. If b = 5, we have $a_0 = a_1 = a_2$ = 2, which does not give a solution.

We thus have two solutions if b = 4, one solution if b = 5, and no solution if b = 2, 3, or 6, and these are listed in the tables below.

Acknowledgment

The author wishes to thank Michael Esser for having suggested the problem for the case b = 10.

Reference

1. H. J. Ryser. Combinatorial Mathematics. The Carus Mathematical Monographs #14. New York: The Mathematical Association of America, 1965.

[Nov.