A BOX FILLING PROBLEM

Amitabha Tripathi

State University of New York at Buffalo
(Submitted January 1988)

1. Introduction

For an arbitrary but fixed integer $b>1$, consider the set of ordered pairs $S_{b}=\left\{\left(i, a_{i}\right): 0 \leq i \leq b-1, a_{i}\right.$ equals the number of occurrences of i in the sequence $\left.a_{0}, a_{1}, \ldots, a_{b-1}\right\}$. A complete solution for S_{b} is given explicitly in terms of b. It is shown that there is a unique solution for each $b>6$ and for $b=5$, that there are two solutions for $b=4$, and that there is none for $b=$ 2, 3, or 6 .

Let b be an arbitrary but fixed integer, $b>1$. We wish to determine, whenever possible, the integers $a_{i}(0 \leq i \leq b-1)$, where a_{i} denotes the number of occurrences of i in the lower row of boxes in the table below.

0	1	2	\ldots	i	\ldots	$b-1$
a_{0}	a_{1}	a_{2}	\ldots	a_{i}	\ldots	a_{b-1}

This may be viewed as a problem in determining all possible sets whose members are functions that satisfy a special property. It is easy to see that the case $b=2$ gives no solution; henceforth, we shall assume that $b \geq 3$. It is convenient to consider the cases $b>6$ and $3 \leq b \leq 6$ separately.

2. The Case $b>6$

It is clear from the definition of each α_{i}, that $\alpha_{0} \neq 0$. Thus, the set $T_{b}=\left\{\alpha_{i}: \alpha_{i} \neq 0\right\}$ is nonempty. In fact, $\left|T_{b}\right|=b-\alpha_{0}$. Since α_{i} boxes are filled by i and since each box is necessarily filled by an integer at most b - 1, we have

$$
\sum_{0 \leq i \leq b-1} a_{i}=b
$$

Define the set $T_{0, b}=T_{b}-\left\{\alpha_{0}\right\}$. Clearly,

$$
\left|T_{0, b}\right|=b-a_{0}-1 \quad \text { and } \quad \sum a_{i}=b-a_{0}
$$

Since each member of $T_{0, b}$ is at least 1 , it follows that $T_{0, b}$ consists of $\left(b-a_{0}-2\right) l^{\prime}$ s and one 2 .

If $a_{0}=1, T_{0, b}$ would consist of $(b-3) l^{\prime} s$ and one 2 , and T_{b} would consist of $(b-2) 1^{\prime} s$ and one 2 . This is impossible since the boxes are being filled by 0,1 , and 2 , while $a_{1}=b-2>4$.

If $a_{0}=2, T_{0, b}$ would consist of $(b-4) 1^{\prime} s$ and one 2 , and T_{b} would consist of $(b-4) 1^{\prime} s$ and two 2^{\prime}. This, too, is impossible since the boxes are being occupied by 0,1 , and 2 , while $a_{1}=b-4>2$.

Thus, $a_{0} \geq 3$ and $a_{A}=1$ where $A=a_{0}$. Hence,

$$
T_{b}=\left\{a_{0}, a_{1}=b-a_{0}-2, \alpha_{2}=1, \alpha_{A}=1\right\}
$$

But $\left|T_{b}\right|=b-a_{0}=4$ implies that $a_{0}=b-4$ and the unique solution in this case is given in the table below.

0	1	2	3	\cdots	$b-5$	$b-4$	$b-3$	$b-2$	$b-1$
$b-4$	2	1	0	\cdots	0	1	0	0	0

3. The Case $b \leq 6$

By repeating the argument in the case $b>6$ until $(*)$, if $a_{0} \neq 1$ or 2 , we would have $\left|T_{b}\right|=b-a_{0}=4$ and so $b=a_{0}+4 \geq 7$. Hence, $a_{0}=1$ or 2 .

If $a_{0}=1, T_{b}$ would consist of $(b-2) 1^{\prime}$ s and one 2 . Since all the boxes are being occupied by 0,1 , and 2 , we must have $b-2 \leq 2$. If $b=3$, we have $\alpha_{0}=\alpha_{1}=\alpha_{2}=1$, which does not give a solution. If $b=4$, we have $\alpha_{0}=1$, $\alpha_{1}=2, \alpha_{2}=1$, which does give a solution.

If $a_{0}=2, T_{b}$ would consist of $(b-4) 1^{\prime} s$ and two 2 's. Since all of the boxes are filled by 0,1 , and 2, we must have $b-4 \leq 2$. If $b=4$, we have $\alpha_{0}=2, \alpha_{1}=0, \alpha_{2}=2$, which gives a solution. If $b=5$, we have $\alpha_{0}=\alpha_{1}=a_{2}$ $=2$, which does not give a solution.

We thus have two solutions if $b=4$, one solution if $b=5$, and no solution if $b=2,3$, or 6 , and these are listed in the tables below.

0	1	2	3
1	2	1	0
2	0	2	0

$b=4$

0	1	2	3	4
2	1	2	0	0

$b=5$

Acknowledgment

The author wishes to thank Michael Esser for having suggested the problem for the case $b=10$.

Reference

1. H. J. Ryser. Combinatorial Mathematics. The Carus Mathematical Monographs非14. New York: The Mathematical Association of America, 1965.
