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1. Introduction 

In Turner [6], a sequence of trees was defined such that the nth tree Tn 
had Fn leaf-nodes, where Fn is the nth element of the Fibonacci sequence. It 
was shown how to construct the trees so that the nodes were weighted with inte-
gers from a general sequence {Cn} using a sequential method described in Sec-
tion 2. 

This produced a sequence of Fibonacci convolution trees {Tn}, so called 
because the sum of the weights assigned to the nodes of Tn was equal to the nth 
term of the convolution product of {Fn } and {Cn}. That is, the ft meaning the 
sum of weights: 

Q(T„) = (F * C)n = E ^ C „ _ i + 1. 
i = I 

This result is illustrated in Section 3. 
With this construction, a graphical proof of a dual of Zeckendorf's theorem 

was given, namely that every positive integer can be represented as the sum of 
distinct Fibonacci numbers, with no gap greater than one in any representa-
tion, and that such a representation is unique [2]. 

To develop this procedure further, we give a construction for kth-order 
colored trees, and for colors consider generalized Fibonacci numbers of order 2 
and greater. To this end, we define the recurring sequence 

{Wn} = {Wn(a, b; p, q)} 

as in Horadam [4] by the homogeneous linear recurrence relation 

Wn = pWn-i - qWn-2, n > 2, 

with initial conditions Wi = a, W2 = b. The ordinary Fibonacci numbers are then 

{FJ E {Wn(l, 1; 1, -1)}. 

2. C o n s t r u c t i o n of K t h - Q r d e r Colored T r e e s 

Given a sequence of c o l o r s , C = {Cl, C2* C3, . . . }, we c o n s t r u c t kth - o r d e r 
co lo red t r e e s , Tn, as f o l l o w s : 

Ti - C{ 
Tn = Tn®Fl * Cn, with Cf being the root node in each case, 

n = 2, 3, ..., k; 

1989] 439 



ON Kth-ORDER CONVOLUTION TREES 

Tk + m - C
k + m kV/m + i> m = 1 , 2 , 

t = o 

in the l!drip-feed" construction, in which the kth-order fork operation V is to 
mount trees Tm, Tffl+|S . .., Tm + k_i on separate branches of a new tree with root 
node at Cm + ji for m > 1. Thus., when m - 1, we get: 

r7 r2 ... r, 

a 
For example, when k = 2 and (7 = {F n } , the sequence of Fibonacci convolution 
trees is 

1- 1 

T, T, 

If 1 

where Ti, T2 s are the initial trees, and subsequent ones are: 

^ = 0 

TL+ = F^V(T2, T3), and so on (see Turner [8]). 

The tree ^ + 1 for the general case is;: 

C T 

I 
pi 
^ t 7 

In Section 4S we take the colors from the kth-order Fibonacci sequence (cf. 
Shannon [5]) given by 

fc-i 
^n+fe = X] ̂ n + i5 n - 1s anc* with initial elements C] , C2 > . .», C^ • 

The colors on the leaves taken from all the trees in the sequence, from left to 
right, form the Fibonacci word pattern (Turner [8]): 
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J \C i i t>2' •••> Cyj ~ C\i C2 s . . . , Cfr , Ci<^2 a ° • ^ f e » ^ 2 • • • ^ k ^ l • • • ^ f c ' • • • 

There i s a remarkable r e l a t i o n s h i p between the l e a f - w o r d p a t t e r n and the 
t r e e shade s e t s , which we s h a l l d i s c u s s in Sec t ion 4 . 

Examples of F ibonacc i word p a t t e r n s , showing how they a r e formed by r e -
o rde r w o r d - j u x t a p o s i t i o n r e c u r r e n c e s a r e , 

v = 2 
v = 3 
r = 4 

f(a, b) = a, 2?, a£, bab, abbab, ... 
/(a, b3 c) = a, 2?, c, abc, boabc, cabcbcabc, 
/(a, &, c, d) = a, Z?, c, J, abed, bedabed, . . 

It is of interest to note that 

/(a, b) = {tf„(a, 2>; 1, -10 t Fn_i)} 

where 10 i m represents 10m for notational convenience, {Wn} is Horadamfs gen-
eralized Fibonacci sequence, and Fn are the ordinary Fibonacci numbers. Thus, 

Wi = a 

W2 = b, 

W3 = W2 + lO1^! 
= b + 10a 
= ab3 in the above notation, and so on. 

3. Number Properties of the Trees 

(i) Node weight totals 

As stated in the Introduction, when k = 2 the sum of all node weights of Tn 
is equal to the convolution term (F * C)n . We illustrate this for the case 
C = {Fn} and with the fifth tree in the sequence. 

It 

T, -

From observation, 

tt(T5) = 1 + (1 + 1 + 1 + 1) + (1 + 1 + 1 + 2) + (2 + 3) + 5 = 20. 

Using the formula, we get 

fi(T5) = FlF5 + F2Fh + F3F3 + FhF2 + F5Fl 

= 2F1F5 + 2F2Fi+ + F\ 

= 10 + 6 + 4 = 20. 

(ii) Number of nodes with colors Cx , C2, . . . , Ck at different nodes 

Now consider the first four trees associated with the color sequence 

C = F(a, b) = as b5 a + b, a + 2b, ... 
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Note that we use /(a, b ) to denote the word pattern and F(a, b) for the color 
sequence. 

Let (na9 rtfr) represent the number of a*s and the number of 2?'s at any level 
in the tree; we get the following table for this pair. 

Tree 

Tj 

T2 

T3 

T4 

Ts 

T6 

m = (level + 1) 1 

(1,0) 

(1,0) 

(1,1) 

(1.2) 

(2,3) 

(3,5) 

2 

(0,1) 

(2,0) 

(2,1) 

(2,3) 

(3,5) 

3 

(0,1) 

(2,1) 

(4,1) 

(4,4) 

4 

(0,1) 

(2,2) 

(6,2) 

.5 

(0,1) 

(2,3) 

6 

(0,1) 

If we represent the element in the nt h row and mth column of this array by 
xrm , then xrm satisfies the partial recurrence relation 

xnm = xn-l,m-l + *n-2,m-l> I < m < Yl, n > 2, 

with boundary conditions 

"11 "21 (1, 0); 

xZ2 = (0, 1); 
xn\ = (Fn-2> Fn-\) > n > 2l 

x^ = (0, 0), m > n. 

The proof follows from the construction of the trees and the fact that the root 
color for Tn, after n = 2, is the nt h term of f(a, b) , which is aFn_2 + b^n-l 
(see Horadam [3]). 

4- Shades and Leaf Patterns 

Consider the set of all leaf-to-root paths in a given convolution tree. 
Each leaf node determines a unique path, say P^ . We can label the paths P]_ , 
P2 J • • • 5 Pg according to their position (taken from left to right) on the tree 
diagram. If we add up the node weights on path Pi and denote this path weight 
by W^9 we obtain a sequence {J/̂ , W2 3 ..., Wg], called the shade of the tree 
(Turner [6]). This is denoted by Z (Tn) and is described in more detail in 
Section 5. 

Recall from Section 2 that the colors on the leaves of the trees in the 
sequence form a Fibonacci word pattern. For example, the pattern f(l, 4) of 
leaf nodes for k - 2 can be seen in Figure 1. 
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Colors: F(l,4) = 

Initial Trees: 

{1,4,5,9,... } 

1 
T, T* 

T3= 1 

Shades: 6, 10 Shades: 14, 15, 19 

Shades: 20,24,28,29,33 Shades: 37,38,42,43,47,51,52,56 

FIGURE 1 

The shades can be generated by the (J) function of Atanassov [1] defined by 
):1N+1N such that cj)(0) = 0 and 

where 
i = 1 

•i = 1 

The shades and leaf numbers of the first four trees for /(l, 4) are as follows: 

Tree 

Leaf numbers 
Ti 

1 
T2 

4 
T3 
14 

T4 

414 
Shade 1 6, 10 14, 15, 19 

)(1) =• 1 (f)(14) = 5 (j)(51) = 6 cj)(105 4) = 14 
<f>(64) = 10 (j)(14, 1) - 15 

<K15, 4) = 19 

Note that (J) (n) just accumulates the elements of the total leaf number pattern 

/(I, 4) = 1, 4, 14, 414, 14414, ..., 

from the left. Thus, the shade set for the tree sequence is 

1 
1 + 4 = 5 

1 + 4 + 1 = 6 
1 + 4 + 1 + 4 = 10... 

In the general second-order case, 

f(a, b) = a, b, ab9 bob, ..., 
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and the shade sequence via + sib is, in turn, 

la, la, 2a, 2a, 2a, 3a, 3a, 
+ + + + + + 
lb lb lb 3b 3b kb. 

An example can be seen in Figure 1 for f(l, 4). 
Various results can be developed from the coefficients of a and b in this 

sequence. For example, if we write them as two-component vectors, we get 

{(#}-{(*)• ( M i M z M D - (D- « ) •« ) . ©••••} 
then the first differences are: 

-{CMS). (!)•(!)• (J)- 0 - (J)- (?)•(?)••••} 

Note that the elements of {A^} determine the Wythoff pairs, much studied in 
the Fibonacci literature [7]. To see this, consider the positions of the lfs 
in the upper elements of {A^}, and likewise in the lower elements: the upper 
l's indicate the sequence {[na2]}, and the lower lfs the sequence {[not]}. 

It is now clear that for the leaf number pattern 

/(I, 1) = 1, 11, 111, 11111, ... 

the shade is 

1, 23, 456, 7891011, ..., 

as Figure 2 so graphically illustrates: for we merely have to accumulate the 
sequence of l's, from the left, to get the shade, which is the sequence at the 
base of the straight lines from the trees to the horizontal axis. 

Thus, each natural number n corresponds to a leaf-to-root path; and the 
path!s color-sum provides a representation of n as a sum of distinct Fibonacci 
numbers: 

" - E &iFi> ei e {0> !>• 

Furthermore, e^ + e^+i > 0 for each i, which means that there is never a gap 
greater than one among the Fibonacci numbers constituting any representation, 
which is evident from the "drip-feed" tree-coloring procedure. Deleting the 1 
from each leaf node, in each representation, one obtains integer representa-
tions with the same properties but in terms of distinct members of the sequence 
iun] = {Fn + \} • This integer-representation result has come to be known as 
ZeckendorfTs dual theorem [2]. 

We now present two general results about the leaf patterns and shade sets. 

Theorem 1: For the kth-order tree sequence defined in Section 2, the colors on 
the leaves, from left to right, form the Fibonacci word-pattern 

Proof: The colors on the leaves, from left to right, are initially by construc-
tion Ci, C2> ..., Ck in turn, and then for Tk+i they are C2 . .. CkCi, and so on, 
as in the recurrence that produces the kth-order Fibonacci word-pattern. 
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Corollary: I t fo l lows t h a t i f C i s the kth - o r d e r F ibonacc i sequence wi th i n i -
t i a l e lements Cl, Cz, . . . , Ck as i n Sec t ion 2, then 

]T ( l e a f c o l o r s ) = ( roo t co lo r Cn), n > k* 

0 1 1 2 3 4 5 6 7 
F F F F F *0 £l £2 3 4 

9 10 11 12 13 14 15 16 17 18 19 20 21 

FIGURE 2(a) 

Weights of leaf-to-root paths versus max. node weight 

a:l 1 3 8 =13 
b:12 3 8 « 14 
c:1123 8 -15 
d:l 2 5 8 - 16 
e:l 1 2 5 8 - 17 
f:l 1 3 5 8 -18 
g:12 35 8 - 19 
h:l 1 2 3 5 8 « 20 

FIGURE 2(b) 

Leaf-to-root paths for T6 

Theorem 2: The shade set of Tn (from the sequence of Theorem 1 and its corol-
lary) is given by adding leaf-colors from the left, that is, by computing the 
partial sums of the leaf-pattern. Thus, if the leaf nodes of Tn have the color 
pattern L^L^ . . . Lr with each Li G {Cl5 C2? . ••» Ck}, then the shade 

Z(Tn) = {Sl + i?„_1, S2 + Rn.l9 . .., Sr + i?n_]_} for n > ks 

where Lm is the mth partial sum of the leaf color pattern (left to right) of 
Tn, and 

n - 1 

i = l 

is the sum of the root colors for the previous n - 1 trees. 
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Proof: An inductive proof is easily established. 

Corollary: If Ci = 1 for i = 1, . .., k, 

llm\JZ(Tn) = Z+, for any k > 2. 

This corollary provides the integer representations which are the subject of 
the next section. 

We can also represent the shades in terms of {Wn}, as defined in Section 1. 
For k = 2 and /(l, 1), we can define the sequence {Srm} by 

S„ 10Wn + 1 (mod 10+777), 1 < m < n. 

Then, for example, for {Wn} = {Wn(l9 4; 1, -10 t Fn)}, we have 

n 
W 

and 
m 1 

2 
4 

2 
41 
5 

3 
14 

4 
414 

3 4 
141 4141 
6 10 

14414 

5 
44141 
14 

which is the shade sequence we found in Section 3. 

5. Integer Representation Theorem 

A family of integer representations using the kth-order Fibonacci sequence 
with lTs for the first k elements is given by the following theorem. 

Theorem 3: Any integer n € Z+ has a representation of the form 

» - E^C., e, e {0, 1}. 

where the C^ are distinct elements of the kth-order Fibonacci sequence F(l, 1, 
..., 1), and 

k-l 
L ei+- > 0 for all i , k > 1. 
j=o 

Proof: The proof follows immediately from Theorem 2 and its corollary and the 
manner of construction of the trees. (The Zeckendorf dual occurs when k = 2.) 

Corollary: We can use. the initial lTs in each representation in a manner which 
provides representations for all integers in terms of distinct elements of the 
sequence whose first elements are 1, 2, 3, ..., k, and whose subsequent ele-
ments are the corresponding l's of F(i9 1, 1, ..., 1). 

As an example, for k = 3, the sequence F(l, 1, 1) gives the color set 
{1, 1, 1, 3, 5, 9, 17, ...}, and the first six trees are: j 

If 1 

1- H H 

1? 1 

K If 1 

1? 1 K 1 

v ~ ^ 
446 

?i T2 T3 T4 Ts 
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The following table shows the shades and the corresponding integer repre-
sentations for integers N = 1, . .., 15 when the initial l?s are replaced by a 2 
when (1, 1) occurs and by 1, 2 when (1, 1, 1) occurs in a representation. 

\Tm 

\z<TJ 

Integers in 
Representation 

Maximum gap 

1 

1 

1 

-

2 

2 

2 

-

3 

3 

3 

-

4 

4 

1 
3 

1 

5 6 

2 1 
3 2 

3 

0 0 

5 

7 8 9 

2 3 1 
5 5 3 

5 

1 0 1 

10 11 

2 1 
3 2 
5 3 

5 

0 0 

6 

12 13 14 15 -. 

1 1 2 1 
2 3 3 2 
9 9 9 3 

9 

2 1 1 1 
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