HURWITZ'S THEOREM AND THE CONTINUED FRACTION WITH CONSTANT TERMS

Graham Winley, Keith Tognetti, and Tony van Ravenstein
University of Wollongong, P.O. Box 1144, Wollongong, N.S.W. 2500, Australia

(Submitted September 1987)

Introduction

We are concerned with finding the convergents

$$
C_{j}(\alpha)=\frac{p_{j}}{q_{j}}
$$

in lowest terms, to the positive real number α which satisfy the inequality relating to Hurwitz's theorem,

$$
\begin{equation*}
\left|\alpha-C_{j}(\alpha)\right|<\frac{\beta}{\sqrt{5} q_{j}^{2}}, 0<\beta<1 \tag{1}
\end{equation*}
$$

where α has a simple continued fraction expansion $\{i ; i, i, \ldots\}$ and i is a positive integer.

Van Ravenstein, Winley, \& Tognetti [5] have solved this problem for the case where $i=1$, which means α is the Golden Mean, and extended that result in [6] to the case where α is a Noble Number that is a number equivalent to the Golden Mean.

The Markov constant for $\alpha, M(\alpha)$, is defined at the upper limit on $\sqrt{5} / \beta$ such that (1) has infinitely many solutions p_{j}, q_{j} (see Le Veque [4]). Thus, in order to determine $M(\alpha)$, we require the lower limit on values of β such that there are infinitely many solutions.

Using the notation of [6] and the well-known facts concerning simple continued fractions (see Chrystal [2], Khintchine [3]), we have:
(i) If $\alpha=\{i ; i, i, \ldots\}$ where i is an integer and $i \geq 1$, then

$$
\alpha=\frac{i+\sqrt{i^{2}+4}}{2},
$$

which is the positive root of the equation $x^{2}-i x-1=0$;
(ii) $p_{j}=\frac{\left(\alpha^{j+2}-\left(-\frac{1}{\alpha}\right)^{j+2}\right)}{\left(\alpha+\frac{1}{\alpha}\right)}, \quad q_{j}=\frac{\left(\alpha^{j+1}-\left(-\frac{1}{\alpha}\right)^{j+1}\right)}{\left(\alpha+\frac{1}{\alpha}\right)}=p_{j-1}$
where $j=0,1,2, \ldots$.
Hence, $C_{j}(\alpha)=\frac{p_{j}}{q_{j}}=\frac{\left(\alpha^{j+2}-\left(-\frac{1}{\alpha}\right)^{j+2}\right)}{\left(\alpha^{j+1}-\left(-\frac{1}{\alpha}\right)^{j+1}\right)}$.
The numbers p_{j} have been studied extensively by Bong [1] where their relationship with Fibonacci and Pell numbers is described in detail.

Solutions to (1)

Case 1. If j is odd $(j=2 k+1, k=0,1,2, \ldots)$, then (1) becomes

$$
q_{j}\left(p_{j}-\alpha q_{j}\right)<\frac{\beta}{\sqrt{5}}
$$

which, using (2) (ii), finally reduces to

$$
\begin{equation*}
\left(\frac{1}{\alpha^{4}}\right)^{k}>\alpha^{4}\left(1-\frac{\beta}{\sqrt{5}}\left(\alpha+\frac{1}{\alpha}\right)\right) . \tag{3}
\end{equation*}
$$

From (3), we see that;
(i) there are no solutions for k if

$$
\begin{equation*}
0<\beta \leq \frac{\sqrt{5}\left(\alpha^{2}-1\right)}{\alpha^{3}} \tag{4}
\end{equation*}
$$

(ii) there is a nonzero finite number of solutions for k if

$$
0<\alpha^{4}\left(1-\frac{\beta}{\sqrt{5}}\left(\alpha+\frac{1}{\alpha}\right)\right)<1,
$$

which simplifies to

$$
\begin{equation*}
0<\frac{\sqrt{5}\left(\alpha^{2}-1\right)}{\alpha^{3}}<\beta<\frac{\sqrt{5}}{\left(\alpha+\frac{1}{\alpha}\right)} \leq 1 . \tag{5}
\end{equation*}
$$

We note that equality holds on the right in (5) only when α is the Golden Mean. (iii) All nonnegative integers are solutions for k if

$$
\begin{equation*}
\frac{\sqrt{5}}{\left(\alpha+\frac{1}{\alpha}\right)} \leq \beta<1 \tag{6}
\end{equation*}
$$

Case 2. If j is even $(j=2 k, k=0,1,2, \ldots)$, then (1) becomes

$$
q_{j}\left(\alpha q_{j}-p_{j}\right)<\frac{\beta}{\sqrt{5}}
$$

and again using (2) (ii), this reduces to

$$
\begin{equation*}
\left(\frac{1}{\alpha^{4}}\right)^{k}<\alpha^{2}\left(\frac{\beta}{\sqrt{5}}\left(\alpha+\frac{1}{\alpha}\right)-1\right) \tag{7}
\end{equation*}
$$

From (7), we see that:
(i) there are no solutions for k if

$$
\begin{equation*}
0<\beta \leq \frac{\sqrt{5}}{\left(\alpha+\frac{1}{\alpha}\right)} \tag{8}
\end{equation*}
$$

(ii) there is a nonzero finite number of nonsolutions for k if

$$
0<\alpha^{2}\left(\frac{\beta}{\sqrt{5}}\left(\alpha+\frac{1}{\alpha}\right)-1\right)<1
$$

which simplifies to

$$
\begin{equation*}
0<\frac{\sqrt{5}}{\left(\alpha+\frac{1}{\alpha}\right)}<\beta<\frac{\sqrt{5}}{\alpha} \tag{9}
\end{equation*}
$$

(iii) all nonnegative integers are solutions for k if

$$
\begin{equation*}
\frac{\sqrt{5}}{\alpha} \leq \beta<1 \tag{10}
\end{equation*}
$$

In the particular case $i=1, \alpha$ is the Golden Mean, $\alpha+(1 / \alpha)=\sqrt{5}$, and there will be no convergents $C_{j}(\alpha)$ that satisfy (1) when j is even. However, if $i \geq 2$, then $(\sqrt{5} / \alpha)<1$ and there are convergents that satisfy (1) when j is even.

Summary

Define

$$
\beta_{L}=\frac{\sqrt{5}\left(\alpha^{2}-1\right)}{\alpha^{3}}, \quad \beta_{M}=\frac{\sqrt{5}}{\left(\alpha+\frac{1}{\alpha}\right)}, \quad \beta_{U}=\frac{\sqrt{5}}{\alpha}
$$

Using (4)-(10), we see that:
(i) If $i \geq 2$, then $\beta_{L}<\beta_{M}<\beta_{U}<1$ and there are no convergents that satisfy (1) when $0<\beta \leq \beta_{L}$.

If $\beta_{L}<\beta<\beta_{M}$, there are a finite number of convergents $C_{j}(\alpha)$ that satisfy (1) with $j=1,3,5, \ldots, 2[R]+1$ and

$$
\begin{equation*}
R=\frac{\ln \left\{\alpha^{4}\left(1-\frac{\beta}{\sqrt{5}}\left(\alpha+\frac{1}{\alpha}\right)\right)\right\}}{\ln \left(\frac{1}{\alpha^{4}}\right)} \tag{11}
\end{equation*}
$$

If $\beta=\beta_{M}$, there are an infinite number of convergents that satisfy (1) given by all $C_{j}(\alpha)$ where j is odd.

If $\beta_{M}<\beta<\beta_{U}$, there are an infinite number of solutions to (1). These are given by all $C_{j}(\alpha)$ for j odd and all but a finite number of $C_{j}(\alpha)$ when $j=0,2,4, \ldots, 2[S]$ where

$$
\begin{equation*}
S=\frac{\ln \left\{\alpha^{2}\left(\frac{\beta}{\sqrt{5}}\left(\alpha+\frac{1}{\alpha}\right)\right)-1\right\}}{\ln \left(\frac{1}{\alpha^{4}}\right)} \tag{12}
\end{equation*}
$$

If $\beta_{U} \leq \beta<1$, there are an infinite number of solutions to (1) given by $C_{j}(\alpha)$ for $j=0,1,2, \ldots$.
(ii) If $i=1$, then $\beta_{L}<\beta_{M}=1<\beta_{U}$ and there are no convergents that satisfy (1) unless $\beta_{L}<\beta<1$. In this case, the only convergents that are solutions to (1) are given by

$$
C_{j}(\alpha)=\frac{F_{j+1}}{F_{j}}, j=1,3,5, \ldots, 2[R]+1,
$$

where

$$
\begin{equation*}
R=\ln \frac{(1-\beta)(7+3 \sqrt{5})}{2} / \ln \frac{(7-3 \sqrt{5})}{2} \text { as specified in }[5] \tag{13}
\end{equation*}
$$

(iii) The lower limit on numbers β such that (1) has infinitely many solutions is given by

$$
\beta_{M}=\frac{\sqrt{5}}{\left(\alpha+\frac{1}{\alpha}\right)}
$$

and in this case the Markov constant for α is given by

$$
\begin{equation*}
M(\alpha)=\frac{\sqrt{5}}{\beta_{M}}=\alpha+\frac{1}{\alpha}=\sqrt{i^{2}+4} \tag{14}
\end{equation*}
$$

Examples

1. If $i=2$, then $\alpha=1+\sqrt{2}=\{2 ; 2,2, \ldots\}, \beta_{L} \simeq 0.77, \beta_{M} \simeq 0.79, \beta_{U} \simeq 0.93$. Hence, we see that for:
(i) $\beta \in(0,0.77]$, there are no convergents satisfying (1);
(ii) $\beta \in(0.77,0.79)$, there are a finite number of convergents satisfying (1) and these are specified by (11);
(iii) $\beta=0.79$, there are an infinite number of convergents satisfying (1) given by all $C_{j}(\alpha)$ where $j=1,3,5, \ldots$;
(iv) $\beta \in(0.79,0.93)$, all the convergents $C_{j}(\alpha)$ satisfy (1) for j odd, whereas all but those specified by (12) satisfy (1) for j even;
(v) $\beta \in(0.93,1)$, all convergents satisfy (1).

In particular, it is seen from (14) that $M(1+\sqrt{2})=2 \sqrt{2}$.
2. If $\alpha=\{1 ; 1,1,1, \ldots\}=\frac{1+\sqrt{5}}{2}$, then $\beta_{L} \simeq 0.85, \beta_{M}=1, \beta_{U} \simeq 1.38$.

Consequently, if $\beta \in(0,0.85]$, there are no convergents that satisfy (1), whereas, if $\beta \in(0.85,1)$, there are a finite number of solutions to (1) specified by (13). If $\beta=1$, there are an infinite number of solutions given by all $C_{j}(\alpha)$ where j is odd and we see from (14) that

$$
M\left(\frac{1+\sqrt{5}}{2}\right)=\sqrt{5}
$$

References

1. N. H. Bong. "On a Class of Numbers Related to Both the Fibonacci and Pell Numbers." In Fibonacci Numbers and Their Applications. Edited by A. N. Philippou, G. E. Bergum, and A. F. Horadam. Dordrecht: D. Reidel, 1986.
2. G. Chrystal. Algebra. 2nd ed. Edinburgh: Adam and Charles Black, 1939.
3. A. Ya, Khintchine. Continued Fractions. Translated by P. Wynn. Groningen: P. Noordhoff, 1963.
4. W. J. Le Veque. Fundamentals of Number Theory. Reading, Mass.: AddisonWesley, 1977.
5. T. van Ravenstein, G. Winley, \& K. Tognetti. "A Property of Convergents to the Golden Mean." Fibonacci Quarterly 23.2 (1985):155-157.
6. G. Winley, K. Tognetti, \& T. van Ravenstein. "A Property of Numbers Equivalent to the Golden Mean." Fibonacci Quarteriy 25.2 (1987):171-173.
