ON CIRCULAR FIBONACCI BINARY SEQUENCES

Derek K. Chang
California State University, Los Angeles, CA 90032
(Submitted January 1988)

The number of combinations of n elements taken k at a time is given by the binomial coefficient $\binom{n}{k}$. If the n elements are arranged in a circle, any two circular combinations are said to be indistinguishable if one can be obtained by a cyclic rotation of the other. Let $C(n, k)$ denote the number of distinguishable circular combinations of n elements taken k at a time. Using a formula for $C(n, k)$, we consider a problem on circular Fibonacci binary sequences.

We recall that a Fibonacci binary sequence is a $\{0,1\}$-sequence with no two 1^{\prime} s adjacent. Similarly, a circular Fibonacci sequence is a circular $\{0,1\}-$ sequence with no two 1 's adjacent. Let $H(n)$ denote the number of distinguishable circular Fibonacci binary sequences of length n, and let $W(n)$ denote the total number of 1 's in all such sequences. The ratio $Q(n)=W(n) / n H(n)$ gives the proportion of l^{\prime} 's in all the distinguishable circular Fibonacci binary sequences of length n. In the case of ordinary Fibonacci binary sequences, this ratio tends to the limit $(5-\sqrt{5}) / 10$ as $n \rightarrow \infty$ [2]. In the case of circular Fibonacci binary sequences, a similar result can be proved.

For any integer

$$
m=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{j}^{r_{j}} \geq 2
$$

where p_{i}^{\prime} 's are distinct prime numbers and $r_{i} \geq 1$, let $\phi(m)$ be defined by

$$
\phi(m)=m\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{j}}\right)
$$

for $m=1$, let $\phi(m)=1$. Thus, ϕ is the Euler totient function. The number $C(n, k)$ of all distinguishable circular combinations of n elements taken k at a time is given by the following formula.

$$
C(n, k)=\frac{1}{n} \sum_{1 \leq m \mid(n, k)} \phi(m)\binom{n / m}{k / m}
$$

(See [1], p. 208.)
Now let $g(n, k)$ denote the number of distinguishable circular Fibonacci binary sequences of length n which contain a total of $k l^{\prime} s$. Since each 1 must be followed by a 0 in the sequence,

$$
g(n, k)=C(n-k, k)
$$

If n is a prime number, the ratio

$$
\begin{aligned}
Q(n) & =\frac{W(n)}{n H(n)}=\frac{1}{n} \frac{C(n-1,1)+2 C(n-2,2)+3 C(n-3,3)+\cdots}{1+C(n-1,1)+C(n-2,2)+C(n-3,3)+\cdots} \\
& =\frac{1+\binom{n-3}{1}+\binom{n-4}{2}+\cdots}{n\left[1+1+\binom{n-3}{1} / 2+\binom{n-4}{2} / 3+\ldots\right]}
\end{aligned}
$$

Using the following formula (see [3], p. 76),

$$
\sum_{k \geq 0}\binom{n-k}{k} x^{k}=\frac{1}{2^{n+1} s}\left[(1+s)^{n+1}-(1-s)^{n+1}\right]
$$

where $s=\sqrt{1+4 x}$, one has

$$
\begin{aligned}
W(n)= & \frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n-1}\right] \\
n H(n)= & n-1+\left[\binom{n}{0}+\binom{n-1}{1}+\binom{n-2}{2}+\cdots\right] \\
& +\left[\binom{n-2}{0}+\binom{n-3}{1}+\binom{n-4}{2}+\cdots\right] \\
= & n-1+\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n} .
\end{aligned}
$$

Thus, the limit through prime numbers is

$$
\lim _{\substack{n \rightarrow \infty \\ \text { is prime }}} Q(n)=(5-\sqrt{5}) / 10
$$

In general, for any positive integer $n=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{j}^{r_{j}}$, one has

$$
\begin{aligned}
n H(n)=n[1 & \left.+1+\binom{n-3}{1} / 2+\binom{n-4}{2} / 3+\cdots\right] \\
& +\sum_{i=1}^{j} \frac{n}{p_{i}} \phi\left(p_{i}\right) \sum_{r \geq 1} \frac{1}{r}\left[\binom{n / p_{i}-r-1}{p-1}+\binom{n / p_{i}^{2}-r-1}{p-1}\right. \\
& \left.+\cdots+\binom{n / p_{i}^{r_{i}}-r-1}{p-1}\right] \\
& +\sum_{\substack{i, m=1 \\
i \neq m}}^{j} \frac{n}{p_{i} p_{m}} \phi\left(p_{i} p_{m}\right) \sum_{p \geq 1} \frac{1}{r}\left[\binom{n / p_{i} p_{m}-r-1}{p-1}\right. \\
& \left.+\binom{n / p_{i}^{2} p_{m}-r-1}{p-1}+\cdots+\left(\begin{array}{c}
n / p_{i}^{r_{i}} p_{m}^{r_{m}} p_{p}-r-1
\end{array}\right)\right]+\cdots
\end{aligned}
$$

where the successive terms enumerate sequences having patterns of increasing multiplicity.

Let $y=(1+\sqrt{5}) / 2, z=(1-\sqrt{5}) / 2$. Then

$$
\begin{aligned}
n H(n)= & \left(y^{n}+z^{n}+n-1\right)+\sum_{i=1}^{j} \phi\left(p_{i}\right) \frac{n}{p_{i}}\left[\frac{p_{i}}{n}\left(y^{n / p_{i}}+z^{n / p_{i}}-1\right)\right. \\
& \left.+\frac{p_{i}^{2}}{n}\left(y^{n / p_{i}^{2}}+z^{n / p_{i}^{2}}-1\right)+\cdots+\frac{p_{i}^{r_{i}}}{n}\left(y^{n / p_{i}^{r_{i}}}+z^{n / p_{i}^{r_{i}}}-1\right)\right] \\
& +\underset{\substack{i, m=1 \\
i \neq m}}{j} \phi\left(p_{i} p_{m}\right) \frac{n}{p_{i} p_{m}}\left[\frac{p_{i} p_{m}}{n}\left(y^{n / p_{i} p_{m}}+z^{n / p_{i} p_{m}}-1\right)\right. \\
& +\frac{p_{i}^{2} p_{m}}{n}\left(y^{n / p_{i}^{2} p_{m}}+z^{n / p_{i}^{2} p_{m}}-1\right) \\
& \left.+\cdots+\frac{p_{i}^{r_{i}} p_{m}^{r_{m}}}{n}\left(y^{n / p_{i}^{r_{i}} p_{m}^{r_{m}}}+z^{n / p_{i}^{r_{i}} p_{m}^{r_{m}}}-1\right)\right]+\cdots \\
= & I+I I+\operatorname{III}+\cdots
\end{aligned}
$$

Since $\phi(r) / r \leq 1$ for any positive integer r, and $|z|<1$, we have:

$$
\begin{aligned}
\text { II } & \leq \sum_{i=1}^{j} y^{n / p_{i}}\left(p_{i}+p_{i}^{2}+\cdots+p_{i}^{r_{i}}\right)<\sum_{i=1}^{j} y^{n / 2} 2 p_{i}^{r_{i}} \\
& \leq \sum_{i=1}^{j} y^{n / 2} 2 n=\binom{j}{1} 2 n y^{n / 2} ; \\
\text { III } & \leq \sum_{\substack{i, m=1 \\
i \neq m}}^{j} y^{n / p_{i}} p_{m}\left(p_{i}+p_{i}^{2}+\cdots+p_{i}^{r_{i}}\right)\left(p_{m}+p_{m}^{2}+\cdots+p_{m}^{r_{m}}\right) \\
& <\sum_{\substack{i, m=1 \\
i \neq m}}^{j} y^{n / 2} 2 p_{i}^{r_{i}} 2 p_{m}^{r_{m}} \leq \sum_{\substack{i, m=1 \\
i \neq m}}^{j} y^{n / 2} 4 n=\binom{j}{2}^{n} 4 n y^{n / 2} .
\end{aligned}
$$

But for large n,

So

$$
\begin{aligned}
& \sum_{i=0}^{j}\binom{j}{i} 2^{i} n y^{n / 2} \leq \sum_{i=0}^{j}\binom{j}{i} n^{2} y^{n / 2}=2^{j} n^{2} y^{n / 2} \leq n^{3} y^{n / 2}=o\left(y^{n}\right) . \\
& n H(n)=y^{n}+o\left(y^{n}\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
W(n)= & \frac{1}{\sqrt{5}}\left(y^{n-1}-z^{n-1}\right)+\frac{1}{\sqrt{5}} \sum_{i=1}^{j} \phi\left(p_{i}\right)\left[\left(y^{n / p_{i}-1}-z^{n / p_{i}-1}\right)\right. \\
& \left.+\left(y^{n / p_{i}^{2}-1}-z^{n / p_{i}^{2}-1}\right)+\cdots+\left(y^{n / p_{i}^{r_{i}}-1}-z^{n / p_{i}^{r_{i}}-1}\right)\right] \\
& +\frac{1}{\sqrt{5}} \sum_{\substack{i, m=1 \\
i \neq m}}^{j} \phi\left(p_{i} p_{m}\right)\left[\left(y^{\left.n / p_{i} p_{m}-1-z^{n / p_{i} p_{m}-1}\right)}\right.\right. \\
& \left.+\cdots+\left(y^{n / p_{i}^{r_{i}} p_{m}^{r_{m}}-1}-z^{n / p_{i}^{r_{i}} p_{m}^{r_{m}}-1}\right)\right]+\cdots=\frac{y^{n-1}}{\sqrt{5}}+O\left(y^{n}\right)
\end{aligned}
$$

Thus, we have the following result on the asymptotic proportions of 1 's in circular Fibonacci binary sequences.

$$
\lim _{n \rightarrow \infty} Q(n)=(5-\sqrt{5}) / 10 .
$$

The author wishes to thank the referee for his comments and suggestions.

References

1. M. Eisen. Elementary Combinatorial Analysis. New York: Gordon and Breach, 1969.
2. P. H. St. John. "On the Asymptotic Proportions of Zeros and Ones in Fibonacci Sequences." Fibonacei Quarterly 22.2 (1984):144-145.
3. J. Riordan. Combinatorial Identities. New York: Wiley, 1968.
