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1. Introduction 

Is it possible for a hyperbola h(x, y) = 0 to pass through infinitely many 
points of the form (Fm, Fn) , whose coordinates are distinct Fibonacci numbers? 
The answer to this question is yes. For example, the hyperbola x2 + xy - y2 + 
1 = 0 passes through the points (1, 2), (3, 5), (8, 13), (21, 34), (55, 89), 

It is not difficult to discover other hyperbolas 

ax2 + bxy + ay2- + dx + ey + f = 0 
that pass through infinitely many (Fm , Fn). We shall call such a hyperbola a 
Fibonacci hyperbola. Bergum [1] and Horadam [2] have discussed classes of 
conic sections that include Fibonacci hyperbolas. In particular, formulas (1) 
and (1;) below occur, after substitutions, among those discussed by Bergum and 
Horadam. The purpose of this note is to prove that these formulas account for 
all the Fibonacci hyperbolas. There are no others. 

2. Formula, Examples, and Graphs 

As usual, let FQ, F±, F2j F$, F^9 F$, F6, ... denote the Fibonacci sequence 
0, 1, 1, 2, 3, 5, 8, ..., and let IQ, £]_, L^y -̂ 3> ^4* ̂ 5> ^6* ••• denote the 
Lucas sequence 2, 1, 3, 4, 7, 11, 18, ... . We extend these sequences in the 
usual way: 

Fn - (-Dn+lF_n and Ln = (~l)nL_n, for n = -1, -2, -3, ... . 

It will be helpful to list the first few hyperbolas of the form 

(1) pn(x, y) = x2 + {-l)n+lLnxy + ( - l ) V + F2 - 0, for n = 1, 2, 3, . . . , 
along with representative points that lie on each hyperbola: 

TABLE 1 

Hyperbola Representative Points 

px(x, 

p2{x, 
p3(x> 

Pk{x> 
P5te, 
p6(ar, 

y) 
y) 
y) 
y) 
y) 
y) 

= x2 + xy - y1 + 1 = 0 
= x2 - 3xy + y2 + 1 = 0 
= x2 + kxy - y2 + 4 = 0 
= x2 - Ixy + y2 + 9 = 0 

= x2 + llxy - y2 + 25 = 
= x2 - I8xy + y2 + 64 = 

0 < 

0 

; i , 2 ) , 
: i , 2 ) , 
: i , 5 ) , 
a , 5), 
;i> i3) 
: i , 13) 

(3, 

(2, 

(3, 

(2, 

, (3 

, (2 

5), (8, 13), (21, 34), (55, 89) 

5), (5, 13), (13, 34), (34, 89) 

13), (8, 34), (21, 89), (55, 233) 

13), (5, 34), (13, 89), (34, 233) 

, 34), (8, 89), (21, 233), (55, 610) 

, 34), (5, 89), (13, 233), (34, 610) 

22 [Feb. 



FIBONACCI HYPERBOLAS 

FIGURE 1 

The Fibonacci hyperbolas 
pl(xs y), p3(x, y) 9 and p5(xs y) 

FIGURE 2 

The Fibonacci hyperbolas 
p2(x9 y) 9 p^(x9 y) 9 and p6 (x9 y) 

Theorem 1: Each hyperbola of the form 

(1) pn(x, y) = x2 + (-l)n+lLnxy + (-l)n y2 + F2 = 0, forn = 1, 2, 3, ..., 

is a Fibonacci hyperbola. 

Proof: Well-known identities, given as I^i^ and J19 in Hoggatt [3], show that for 
odd n and even m, 

xm ^ ^n m Ln + m)Ln + m L n m Ln-mLn +m ^ L
 n 

= F
2 + ^2 _ r^2 + (_1)m + ̂  + lF2i 

= 0. 

Similarly, identities J22 anc^ ̂ 19 yield analogous results for even n and odd m. 
Thus, for any positive integer n9 positive even integer h9 and integer k for 
which k + n is odd, all the points 

(Fk' Fk + n>5 (Fk + h9 Fk + n + h^ 9 (Fk+2h9 Fk + n + 2h'9 ' ' ' 

lie on hyperbola (1). 

Theorem 2: Each hyperbola of the form 

(!') qn(x, y) = x2 + (~l)n + lLnxy + (-l)V - î 2 = 0, for n = 1, 2, 3, . . ., 

is a Fibonacci hyperbola. 

Proof: For odd n and odd m9 identities _Z~22 anc^ -̂ 19 yield 

wZ + (T. w - F )F - F2 = F2 + F F , - F2 

= ^2 _ F 2 + ,F2 _ F 2) 

= 0. 

Similarly, qn(Fm, Fn + m) = 0 for even n and even /??. As in the proof of Theorem 
1, it now follows that for any positive integer n, positive even integer h9 and 
integer k for which k + n is even, all the points 

(Fk9 Fk + n)> (Fk + h> Fk + n + h^9 (Fk + 2h9 Fk + n + 2h^ > '*' 
lie on hyperbola (1')• / 
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TABLE 2 

Hyperbola Representative Points 

q-^ix, y) = x2 + xy - y2 - 1 = 0 
q1{xi y) = x2 - 3xy + y2 - 1 = 0 
q3(x, y) = x2 + hxy - y2 - 4 = 0 
qi+(x> y) = x2 - Ixy + y2 - 9 = 0 
q5(x, y) = x2 + llxy - y2 - 25 = 0 
q§(x, y) = x2 - I8xy + y2 - 64 = 0 

1) (2, 3), (5, 8), (13, 21), (34, 55) 
3), (3, 8), (8, 21), (21, 55), (55, 144) 
3), (2, 8), (5, 21), (13, 55), (34, 144) 
8), (3, 21), (8, 55), (21, 144), (55, 377) 
8), (2, 21), (5, 55), (13, 144), (34, 377) 
21), (3, 55), (8, 144), (21, 377), (55, 987) 

FIGURE 3 

The Fibonacci polynomials 
q1(x, y), q3(x, y), and q5(x, y) 

FIGURE 4 

The Fibonacci polynomials 
q2(x> y} > ̂ 4(^5 2/)> a n d ^ 6 ^ ' y^ 

3. The Main Theorem 

In this section we shall state and prove the main theorem of this paper, 
which expresses every Fibonacci hyperbola in terms of the polynomials Pn(x, y) 
and qn(x, y). 

Lemma 3.1: The coefficients a, b, c, d, e, f in the equation 

(2) ax2 + bxy + cy2- + dx + ey + / = 0 
of a Fibonacci hyperbola can be chosen to be integers. (Following the proof of 
this lemma, these coefficients will be understood to be integers except where 
stated otherwise.) 

Proof: Divide both sides of (2) by one of the nonzero coefficients, and then 
substitute for {x, y) any five distinct (Fm , Fn) that lie on the hyperbola. 
Cramer's Rule applied to the resulting five equations shows that each coeffi-
cient is a rational number. Let D be the least common multiple of the five 
denominators. Write (2) using the five rational numbers and 1 as coefficients, 
and then multiply both sides by D. The resulting coefficients are integers. 
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Lemma 3.2: Suppose (2) is a hyperbola that passes through the points (Fs , 
Ft ) for some pair s ]_, s^ » S3, . .. and £]_, 7̂ 5 "£33 ... of nondecreasing se-
quences of integers. Then there exist constants 77? and N such that tn - sn = m 
for all n > N. 

Proof: The proof will be in three cases. 

Case 1. Suppose c = 0. Then b * 0, else (2) would not represent a hyper-
bola. Divide both sides of (2) by x2 to find 

-alb = lim y/x = lim Ft /Fs 
x->oo n + °o n n 

= lim(a** - 3 ^ ) / ( a S n - 3 ^ ) = l im atn~Sn
9 

n + co n + 00 

where a = (1 + / 5 ) / 2 and 3 = (1 - / 5 ) / 2 . 

I f a = 0, then l im w = ~d/b9 so t h a t l im i^ = - d/b , which i s i m p o s s i b l e , and 
COco n->co n 

so a ̂  0. Consequently lim a n ~Sn is a nonzero constant. The exponent tn - sn 
n + <x, 

is an integer for all n, so that tn - sn is a constant for all sufficiently 
large n. 

Case 2. If c ̂  0 and a = 0, then 2? * 0, else (2) would not represent a 
hyperbola. Divide both sides of (2) by y2 to find 

-c/2? = lim x/y = lim Fs /Ft = lim a 
Z/ -> co n > c o * " ?Z->oo 

sr - t „ 

so that sn - tn9 and hence tn - sn is a constant for all sufficiently large n. 
Case 3. If o * 0 and a * 0, then divide both sides of (2) by x2 and solve 

the resulting equation for y/x to obtain the slopes of the asymptotes: 

X > c o ~ n>oo "" " n->c 
(-2? ± /Z?2 - kac)/2c = l im z//x = l im Ft /FSn = l im or" ~Sn 

x>co n > 00 n n n-> 00 

so t h a t tn - sn must be a c o n s t a n t for a l l s u f f i c i e n t l y l a r g e n. 

Theorem 3: For n = 1, 2, . . . , l e t 

p n 0 r 5 z/) = ;r2 + (-l)n+1Lnxy + ( - l ) V + F2 = 0, 
and let q (x, y) = p (x, t) - 2F2. Every Fibonacci polynomial is one of the 
following forms: 

pn(x9 y) = 0, qn(x, y) = 0, Pn(-x, y) = 05 or qn(-x, y) = 0. 

Proof: Suppose 

(2) ax2 + bxy + cy1 + dx + ey + f = 0 

is a hyperbola that passes through the points (FSn » ^tn) f° r some pair s^, s2 5 
83, ... and t \ , 11> ^3'J ••• °f nondecreasing sequences of integers. We refer 
to the three cases of Lemma 3.2 and show first that Case 1 and Case 2 cannot 
occur. Let m be as in Lemma 3.2; note that m can be negative. 

In Case 1, if m = 0, then infinitely many (FSn s FSn ) lie on the conic sec-
tion (2), and so (2) represents the line y = x , not a hyperbola. If m = 0, 
then the equation 

-alb = am = [(1 + v/5)/2]'7? = (Lm + /5i^)/2 

shows that a lb is not a rational number, contrary to Lemma 3.1. We conclude 
that c * 0. 
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In Case 2, -c/b = a n~Sn , an irrational constant for all sufficiently large 
n, contrary to Lemma 3.1. Consequently, c * 0 and a * 0, which is Case 3. 

In Case 3, (-b ± /Z?2 - bac)/2c = am = (Lm + f5Fm )/2. Separating rational 
and irrational parts yields 

(3) -b/o = Lm. and ±(/£2 - kac) Ic = /5Fm . 

Substitute ~oLm for Z? into the second equation and obtain 

c = 4a/(L2 - 5F2) = (-l)ma. 

We may and do assume that a = 1 (allowing i e, / to be rational numbers), so 
that (2) takes the form 

(4) x1 - {-l)mLmxy + (~l)my2 + dx + ey + f = 0, m = ±1, ±2, ±3, ... . 

Now, substitute (FSn , Fs + m) for (a:, 2/) into (4): 

Using identities X21 (if w i-s even) and i~23 (if ̂  i-s odd) from [3] gives 

(-l)" [*£+»> " ̂  ^ + 2™ 1 + ̂ a B + eFSn+m + f = 0. 
Identity _Z"ig from [3] then gives 

{-l)s»+mF£ + dFSn + eFSn + m +f- 0. 

Let ?2]_, 7̂ 2? ̂ 3 be any three integers, exceeding N, for which the three integers 
sn , sn , s^ are either all odd or all even. Then the system 

(5) dF8ni + eFSn + m+ f = (-l)8"'+n + Vffl2, for i = 1, 2, 3, 
has the unique solution 

d = 0, e - 0, / - (-l)8-« + n + V2. 

Clearly, the sw., for i = 1, 2, 3, ..., must all be odd or must all be even, 
else the infinite system (5) has no solution. 

Case 1. Suppose the sn are all odd. Rewrite (4) as 
t 

(6) x2 - {-l)mLmxy + ( - l ) V + (-DmFm = 0, m = ± 1 , ±2, ±3 , . . . . 

I f 77? < 0, then Lm = ( - l ) r a L_ n and Fm = ( - l ) m + 1 F _ m , so t h a t 

x2 - L_mxy + (-l)V + (-l)mF_2m = 0. 

Substitute n for -m to obtain 
(7) x2 - Lnxy + (-l)V + (-l)X2 = 0. 

If n is even, (7) is p (x, z/) = 0 ; if n is odd, (7) is qn(-x, y) = 0. 

If n = m > 0 and is even, then (6) is p O , z/) = 0. If n = m > 0 is odd, 
then (6) is qn(x, y) = 0. 

Case 2. Suppose the sn. are all even. Rewrite (4) as 

(6') x2 - (-l)mLmxy + (-iyV - (-1)777*7* = 0, m = ±1, ±2, ±3, ... . 
If w < 0, then write n = -777, so that 

(7') x2 - L^z/ + (-l)V - (-DX2 = 0-

If n is even, (7 ') is ̂  (x, z/) = 0 ; if n is odd, (7 ') is ̂  (-x, y) = 0. 

If n = m > 0 and is even, then (6') is qn(x, y) = 0. If n = m > 0 is odd, 
then (6') is p (x, z/) = 0. 
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4, Concluding Remarks 

Theorem 3 establishes the following representation for all Fibonacci hyper-
bolas : 

y2 + bxy + (~l)nx2 + / = 05 where \b\ = Ln and |/| = F2» 

Each of these hyperbolas consists of two branches: . 

y = (-bx + Ab2 - 4(-l)n]x2 - 4/)/2 
and 

y = (-bx - Ah2 - 4(-l)n]x2 - 4/)/2. 

The representative points listed in Tables 1 and 2 lie on the upper branch of 
their respective hyperbolas. Does the lower branch also pass through points 
that are closely associated with Fibonacci numbers? The affirmative answer to 
this question follows from Bergum [1, pp. 27-28]. 
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