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In a p r e v i o u s paper [6] we have shown t h a t c e r t a i n o p e r a t o r s i n a c e r t a i n 
comple t ion A of the s-<f-ring A over t he r a t i o n a l numbers de termine a w e l l -
def ined b a s i s . One of the o p e r a t o r s which we cons ide red t h e r e was H! = E ~ Q,D 
and we c a l l e d i t s co r respond ing b a s i s {u^}. I t was shown i n t h a t paper t h a t 

71= 0 

where the coefficients bn a.re. the Bernoulli numbers. The partial fraction de-
composition of these numbers is given by the von Staudt-Clausen Theorem (see, 
for example, [1]): 

bQ = 1, b1 = 1/2, b2m+l = 0, b2m = (-l)ffl (integer + E 1 ^ ) ' ^ > 1, 

where p. is a prime number so that (v. - 1) 2/77. (Note that v. occurs in the 
first power only.) 

Now, let 

(W{)3 = J2 cnun° 
n= 0 

In this paper we will give the partial fraction decomposition for the coeffi-
cients cn . It will turn out for certain cn that higher powers of primes in the 
partial fraction denominators will occur, namely, second and third powers of 2 
and at most second powers of the other primes. 

Definition: We will call a prime p > 3 regular of the first kind if a partial 
fraction belonging to p1 does occur for all n E 2m mod p - 1, n i 2m mod p, m = 
1, 2, ..., (p - 3)12. 

We will call a prime p > 3 regular of the second kind if a partial fraction 
belonging to p1 does occur for all n E 0 mod p - 1, n t 0 mod p. 

It will be seen that our definition of a regular prime of the first kind is 
equivalent to Rummer's definition of a regular prime [5]. It is not known 
whether there exist an infinite number of such primes. On the other hand, it 
is well known that there exist infinitely many irregular primes of the first 
kind. Robert Gonter from the Computer Center at the University of Massachu-
setts was kind enough to test all primes up to about 12 xlO6 for regularity of 
the second kind and found that 5, 13, and 563 are the only irregular ones under 
those primes (see [8]). 

Theorem: The partial fraction decomposition of the coefficients cn with re-
spect to the rest system {0, ±1, ±2, ..., (p - l)/2} is as follows for n > 1: 
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I. Partial fractions with 2, 22, 23 in the denominator. Let 

[0 for n = 25 6, 7, 9, 10 

II for ft = 1, 3, 4, 5, 8 

-nl 

then 

0 for n = 4} 6, 7, 8, 9, 10 

1 for n = l, 2S 3, 5 

0 for n = 1, 2, 4, 6, 8, 10 

1 for n = 3, 5, 7, 9 

yi yi yi 
1 n\ In2 1 nZ 

22 23 

occur as partial fractions of cn for n = 1 through 10 and when n! = ft mod 8 for 
ft, nr > 3, then sn, = sn occurs in cn,. 

II. Partial fractions with 3, 32 in the denominator. Let 

'n\ 

Pn2 

then 

-1 for n = 4, 5, 11, 12, 17 
0 for n = 1, 6, 7, 8, 10, 13, 14, 19, 20 
1 for n = 2, 3, 9, 15, 16, 18 

-1 for n = 2, 4, 6, 10, 12, 16, 18 

0 for n = 1, 3, 5, 7, 8, 9, 11, 13, 14, 15, 17, 19, 20 

Pnl , Pn2 
3 32 

occur as partial fractions of cn for ft = 1 through 20 and when nr - n mod 18 
for ft, n! > 3, then o*„, == an occurs in cn, . 

III. Partial fractions with p or p2 (p > 5) ±n the denominator. 

(a) If n E 1 mod p - 1 and ft t p - 2 mod p, ft > 1, let 

p = -1 + (ft - l)[(p - l)/2] + ft[(p - l)/2]2 mod p in i?, 

then p/p occurs as a partial fraction. 

(b) Let b<im be the 2mth Bernoulli number, N 2_m the numerator, and Ẑ m t n e 

denominator of £>2m* n E 2m mod p - 1, 772 = 1, 2, ..., (p- 3)/2, and 
pJ71/2m and n i 2m mod p5 p E (^m^~lD2mN2m^n " ^ ) mod p in i?, then p/p 
occurs as a partial fraction. 

(c) By Wilson?s theorem, we may write 1 + (p - 1)! = ap. If ft E 0 mod 
p - 1, ft i 0 mod p, a £ 0 mod p, let p = -fta mod p in i?, then -1/p2 + 
p/p occurs in the decomposition. 

Remark 1: Let 

2m = IlP^n^^7' (prime factorization!) 

so t h a t (p. - 1)12772. Let 

T = TI/9 / n ^ j ' 
2/77 ' * * \ 7 
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which i s an i n t e g e r , then we may a l s o use 

p = T I ] P " ( S i + 1) in - 2m) mod p i n R i n 1 1 1 ( b ) . 

Remark 2: I t can be shown t h a t 

1 + (p - 1 ) ! E pbp_l - p + 1 mod p 2 . 

See [2] where this has been used to show that 1 + (p - 1) ! t 0 mod p2 for all 
p < 114 except for p = 5 and 13, but, as mentioned above, R. Gonter has shown, 
using the computer, that 563 is the only other irregular prime < 12 x 10 . See 
[8]. Other interpretations of a are given in [3] and [7]. 

Corollary 1: Let m = 1, 2, ..., (p - 3)/2, then 

p is regular of the 1st kind <=> p\^2m <===> P ^s Summer regular. 

Corollary 2: If a = [1 + (p - l)!]/p, then 

l + ( p - l ) ! ^ 0 mod p2 <==> a i 0 mod p <=> p is regular of the 2nd kind. 

Proofs: From [6], we know that 

k= 1 

where {x^} is the basis belonging to the operator Dr = E - D. For this basis, 
the multiplication in A is especially simple, namely component-wise, so that 

(u{)3 = Z ( 1 A 3 ) ^ . 
k= 1 

Also 

^ = i <<> 
n= 0 

where the Bn are defined as follows: 
B% = (-l)k+lklS^+l where S*+l is determined by the iteration 
Sn+1 = Sn~1 + kSn> Sn = 1* a n d S i = 0 for ^ > 1. 

The reader should be warned that our definition of the Bn differs from the one 
in [6] by a factor of (-l)n. If we now put 

(^{)3 = £ cnu'n9 

n = 0 

it follows that cQ = 1 and 
n+l 

fe= 1 

After this we do not have to refer to [6] anymore. In the following proofs, 
"~" always means "equal up to an added integer.11 

I. To prove the statements of the theorem in part I, we note first that 
powers of 2 in the prime factorization of fc3 divide into k\ unless k - 2, 4, or 
8. For k = 2, 21/23 = 1/4; for k = 4, 41/43 - 3/8; for k = 8, 81/83 ~ -1/4. 
Using this and the iteration from above to calculate the reduced numerators of 
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Bn/ks for k = 2, 4, 8 mod 4, 8, 4, respectively, we see that they repeat 
periodically with increasing n with periods of length 1, 2, and 8, respective-
ly. Computing next the partial fractions of the so reduced sums 52/23 + #Jj/43 
+ B®/83 for n = 1, 2, ..., 10, we get the statements in part I of the theorem. 

II. Similarly, one proves the the statements in part II of the theorem. 

III. To prove the statements of part III, one uses the following formulas: 

(1) S^= (~l)kllk\ Z ( - l ) J n V n ( s e e , for example, [ 4 ] ) ; 
j = l v<? I 

(2) S% = 0 fo r n < k and S% = 1 [ t h i s fo l lows r e a d i l y from ( 1 ) ] ; 

(3) B\ = Z (-l)j + lQ)jn+l [ fo l lows from ( 1 ) ] ; 
J = 1 

<*> L e t X r , s ) " 5 e + ( P + l ) ( p . l ) - 5 * + 2 . < p - l > ' t h e n 

B^l.e)' A,s) = £ (-lV + lJ8 + r(p'» U^1 - D 2 = 0 mod p 2 

(since, by Fermat?s theorem, j p ~ l - 1 = 0 mod p) . It follows that 
B^(r s) ^-S independent with respect to r mod p2. 

(5) Wilsonfs theorem: (p + 1)! + 1 = 0 mod p. 

Now let p > 5. First we realize that kl/k3 contains a power of p in the denom-
inator (after cancellation) only if k = p or k - 2p. For & = p we have 

p!/p3 = (p - 1)1/p2 

and for k = 2p we have 

(2p)!/(2p)3 ~ [(p-l)/2]2/p. 

To compute £2p/(2p)3 that is ~ -[(p - 1)/2]252^x/p, one uses S 2 ^ E 52p-l m o d p 

and 
(0 if s < v 

(t if s = p 

where 5A/r s) is defined as £$ + (*•+i)(p - i) - ̂ s+p(p-i) and shows independence with 
respect to r mod p by using formula (4) from above. It follows that 

(0 if s < p 
^ t ( p „ 1 } / ( 2 p ) 3 ~ 1 where Pl = -t[(p - l)/2]2 mod p. 

(Pl/p if s = p 

To compute 5nP/p3 which is ~ (p - l)lS?+l/p2 ~ (p - D l C ^ - i ) ^ 2 if s < p and 

~ (p - 1)!*S^~*( L)/p2 - 1/p if s = p where n has been replaced by s + r(p - 1) 

b U t K ^ o for s < p - 1 
1 E J * (0,a) ^ 2 C^-n M * , m o d P 

^"(6.8) for a - p - 1 
The statements in III(a) can now be proved. Let s = 1 so that 

A(J"A; E -P/2 mod P2 

and, therefore, 
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5 i + r ( p - l ) / P 3 . ~ Pz'P 
where p 2 = - [ r ( p - l ) / 2 + 1] mod p and ^ / p 3 ~ 0. P u t t i n g 

n = 1 + p(p - 1) = p + t ( p - 1) 
and 

p = P l + p 2 E - 1 + (n - l ) ( p - l ) / 2 + n [ ( p - l ) / 2 ] 2 mod p , 

then p /p occurs as a p a r t i a l f r a c t i o n of on i f n * 1 and n £ p - 2 mod p . I t 
i s c l e a r t h a t , i f n = 1 and n = p - 2 mod p , then p = 0 mod p and p does not 
occur i n a p a r t i a l f r a c t i o n . 

1 1 1 ( b ) . Let n = s + r ( p - 1) where s = 2 , 3 , . . . , p - 2 . 

3n
P/p3 ~ ^ I j / p 2 ~ -rSP^/p/p. 

To compute S^ ^/p, we utilize the following Bernoulli numbers: 

£ s = S E ^ / ^ = * £ ( - l ) k + 1 [ ( f c - l ) ! / f c ]S* 8 = 2 , 3 , . . . , p - 2, 
k= 1 k= l 

and 
£ s + p _ i - S E ( - D f c + 1 [ ( ^ - l ) ! / f c ] £ * + 1 + E ( - l ) f c + 1 [ ( k - l ) ! / p ] ^ + 1 

fc= 1 fc=s+2 

" ^ J + P + Z P ( -D f c + 1[(fe - D!/p]58
f c

+ m o d p . 
P ^ fc-p + l 

The first sum is equal to bs, the second and third sums E 0 mod p. Therefore, 
we have 

-Cp./P - -S/+p/p = &s + p-i - &s = "(l/s)&s mod p. 
The last congruence follows from a theorem of Kummer. (See, for example, Nr. 
14 in [1].)- Finally, we have 

0 for s odd, since b^ = 0 

V - 3 ? > 3 

p / p f o r S = 2777, 777 = 1 , . . . , 
where ^ 

p E -(r/s)b8 E -(2m)-lD-lNZmr mod p 

where Ẑ m and ^2m a r e t n e denominator and numerator of b^m* Note that (2w)_1 

exists for our 77?'s and that 

D^ = FIp1 for (p. - 1) | 2777 (by the von Staudt-Clausen theorem) 

exists also for our 777 Ts. Furthermore, n = 2m + r(p - 1) , so -v E n - 2m mod p 
and therefore 

p E (277?)~1^̂ /l/2m(n - 2777) mod p if p|^2m and p\n - 2m 
which proves 111(b). 

III(c). Here n = p - 1 + r(p - 1) E 0 mod p - 1, 
R P /D3 ~ -S p _ 1 /D3 
p_l + P(p_1)/p

 Dp -2+r(p- I)' r 
a n d 

- 7 3 P _ 1 = - / ? p _ 1 - r» • A p _ 1 
^ p-2 + p ( p - l ) - b

p-2 T SA(r,p~2) 

(p _ i), _ r* B^~l_Up_2) mod p2, 
but 

C , p . 2 ) = C 1
p . i - ^ E l + (p + 1)! E a.pmodp^ 
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for some i n t e g e r a = 0 5 1, 2 , . . . , p - 1. T h e r e f o r e , 

~Bp~l - - l + ( r + l ) a p mod p 2 . 

Put p - ( r + l)a = -na mod p, then p/p - 1/p2 occurs in the decomposition of cn 

provided that n f 0 mod p and a i 0 mod p5 which proves III(c). 

Proof of Remark 1: We use a theorem of von Staudt (see, for example, [1], vol. 
2, p. 55) which says that T is an integer, then 

{2mylB-2
l
mNlm = T O P : 1 " ^ . 

Proof of Remark 2: 
P-i 

K-i = E (-Dk + 1[(fe - i)!/fc]^p + (P - i ) i / p , 
fc = 1 

so 

so 

pbp-l = p + (p - 1)! mod p 2 (since p£p = 0 mod p 2 for l < / c < p - l ) , 

1 + (p - 1)! = pfc ! - p + 1 mod p 2. 

Proof of Corollary 1: The first equivalence follows at once from our defini-
tion of a regular prime of the first kind and from 111(b). The second equiv-
alence was proved by Kummer himself [5]. 

Proof of Corollary 2: The first equivalence follows from the proof of III(c) 
and the second equivalence from the definition of primes of the second kind. 
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