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1. Introduction 

This paper is concerned with the study of some third-order sequences of 
polynomials. While it is only of an introductory nature, it does give some-
thing of the flavor of the research involved. In particular, we have found 
that an examination of the roots of the auxiliary equation to be a challenging 
and rewarding endeavor. 

The first of these sequences is {rn(x)}. It is defined thus: 

(1.1) 
rQ(x) = 0, rl(x) == 1, r2(x) = 2x 

[rn+1(x) = 2xrn(x) + rn_2(x) (w > 2) 

Two other sequences, namely {sn(x)} and {tn(x)}3 are also considered. They are 
defined thus: 

(1.2) 

(1.3) 

SQ(X) = 0, s-^ix) = 2, s2(x) = 2x 

[sn+l(x) = 2xsn(x) + sn_z(x) (n > 2) 

\t0(x) = 3 , tl(x) == 2x, t2(x) = kx2-

U n + 1(x) = 2xtn(x) + tn_2(x) {n > 2) 

These sequences are called third-order diagonal functions of Pell polyno-
mials [5], or simply Pell diagonal functions, because the first two coincide 
with sequences derived by taking the "diagonals" of gradient 1 from the arrays 
produced by Pell and Pell-Lucas polynomials [10]. 

The three sequences can be considered to be constructed from the diagonals 
of gradient 2 from the arrays produced by expansions of 

(2x + l) n, (2x + 2)(2x + l ) n - r
s (2x + 3)(2;s + l)*-"1, 

where n > 1. 
Considered as a sequence of order three, {sn(x)} appears to be of little 

significance. The sequences {rn (x)} and {tn(x)} may be deemed to be the fun-
damental and primordial sequences, respectively, for those obeying the recur-
rence relation in (1.1)-(1.3) [9]. All of these sequences are too special to 
provide subject matter for the study of third-order sequences in general. In a 
later paper some generalizations of these polynomials may be considered and 
these are closer to typical third-order sequences. 

Jaiswal [6] and Horadam [4] studied the diagonal functions of Chebyshev 
polynomials of the second and first kinds, respectively, {p (x)} and {q (x)}. 
It may be shown that 
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(1.4) 
\rn{x) = (-l)n-\(-x), vn{-x) = (-l)n-lpn(x) 

[sn(x) = i-ir^q^-x), 8n(-x) = (-l)n-lqn(x) 

Simple relations such as these are to be expected as Pell and Pell-Lucas 
sequences are complex Chebyshev polynomials [5]. 

2. Roots of the Auxiliary Equation of the Pell Diagonal Functions 

The auxiliary equation of the diagonal functions (1.1)—(1.3) is the cubic 

(2.1) f(y) = 2/3 - 2XyZ - 1 = 0. 

By DescartesT Rule, one of the roots is real and positive. Denote this by a. 
For x > 0, the other two roots, 3 and y are conjugate complex numbers. It is 
noted that, from (2.1), 

fa + 3 + y = 2x 

(2.1 ') Ja3 + 3y + ya = 0 

[a3y = 1 

By using CardanoTs procedure [3], it is found that 

a = 2x/3 + \/{16^3 + 27 + /(864x3 + 729)}/3^2 
+ ^{16x3 + 27 - /(864^3 + 729)}/3v/2 

( 2 . 2 ) 3 = 2^/3 + u)\/{16x3 + 27 + /(864x3 + 729)}/3v/2 
+ oo2\/{16x3 + 27 - /(864x3 + 729)}/3\/2 

|Y = 2x/3 + a)2v/{16^3 + 27 + /(864^3 + 729)}/3v/2 
+ u\/{16x3 + 27 - /(864x3 + 729)}/3v/2 

where to and to2 are complex cube roots of uni ty; a, 3> and y are c lear ly alge-
braic functions of x. We use function notat ion with the roots where appropri-
a t e . From (2 .2) , i t i s seen tha t , for x > -3/2 \ / 4 , the quant i t i es 

(2.3) 
\/{16;£3 + 27 + /(864x3 + 729)} 

^/{16;c3 + 27 - /(864x3 + 729)} 

are real and so 3 and y are conjugate complex numbers. If 

(2.30 x = -3/2\/4 = d, then 3 = y. 

Again from (2.2), it may be shown that 

(2.4) 

Hence 

(2.5) 

a2- - |3| = 2xa for x > d. 

a > |3| = |Y| for x > 0 

a = |3| = |Y| = 1 for x = 0 

a < |3| = |y| for d < x < 0. 
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For x < d, it is convenient to consider the roots to be given by 

fa = 2^/3 + 4x/3 COS(4TT + 0)/3 

(2.6) I 3 = 2x/3 + 4x/3 cos(0/3) 

lY = 2x/3 + 4^/3 COS(2TT + 0 ) / 3 

where 

(2 .7 ) cos 0 = (16x3 + 2 7 ) / 1 6 J ? 3 , s i n 0 = 3/{3(32a;3 + 2 7 ) } / 1 6 i ^ 3 

= 3 / ( 3 £ ) / 1 6 x 3 

D be ing the d i s c r i m i n a n t of ( 2 . 1 ) , and thus 
(2.8) D = - (32x3 + 27). 
It may be shown that, for x < d9 

-IT < 0 < 0 

a > 0 

3, y < 0 

I 31 > |y| > a 
|3| > 1 

|y| > 1 for -1 < x < d 

(2.9) \ |y| < 1 for x < -1 

lim 0 = 0 " 
X + -oo 

lim a = 0+ 

lim 3 = _0°  
X + -oo 

lim y = 0~ 
X + -oo 

Some simple correspondences for xs 0, a, 3? and y a r e recorded in Table 2.1. 

TABLE 2.1 

X 

d 
- 1 

- 3 / 2 ^ 2 
—oo 

0 

-TT 

- c o s _ 1 ( - l l / 1 6 ) 

- I T / 2 

0 

a 

1 / ^ 4 

( A - l ) / 2 
(/3 - l ) / ^ 2 
0 

6 

- 2 / ^ 4 
- ( / 5 + l ) / 2 
- ( / 3 + D / ^ 2 
— O O 

y 

- 2 / ^ 4 
- 1 

- 1 / ^ 2 
0 

A computer investigation carried out by Br. V. Cotter indicates that, in 
the natural domain, a is an increasing function, that |$| is a decreasing func-
tion, and that |y| increases, reaches a maximum near x - d and then decreases 
to zero. 

It is noted that a(-l) and 3(-l) are negatives of the roots of the auxili-
ary equation of the Fibonacci sequence. As a result, we would expect that 
there are simple relations between {rn(-l)}9 {sn(-l)}, and Un(-1)} and the 
Fibonacci and Lucas sequences. In fact, a study of the diagonal functions has 
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resulted in obtaining what appears to be a large number of highly specific 
identities for these numbers. We were alerted to these possibilities by the 
work of Jaiswal [6] and Horadam [4] dealing with the diagonal functions of the 
Chebyshev polynomials. 

3. Binet Formulas for the Diagonal Functions 

A variety of procedures may be followed to give a number of formulas for 
the diagonal functions in terms of the roots, a, 3> and y. It may be shown 
t h a t , 

(3 .1 ) 

(3 .2 ) 

(3 .3 ) 
where 

(3 .4 ) 

and 

(3 .5 ) 

for 3 * Y> 

rn(x) = 

rn(x) = 

1 

a 
an+l 

1 

a 2 

arz + 3 

rn(x) = An
a + 

a 
A (a - 3) (a 

r (x) = -
a n + l 

I I 

3 Y 
an+l v n + l 

1 1 

3 2 Y2 

37-2 + 3 y z + 3 

Bl + C? 

ID — 

/ 
/ 

/ 

/ 

/ 

/ 

1 

a 

a 2 

1 

a 2 

a 

3 
- y ) ' " (3 - Y ) ( 3 -

+ i ^ _ + Jr n + l 

t / \ 

1 

3 

3 2 

1 

3 2 

3 

- a ) ' 

1 

Y 

Y2 

1 

Y2 

Y 

and 

= Aw + 1(a?)/A2(a;) 

= 6 n + 3 ( ^ ) / 6 1 ( x ) 

T 
(Y - a ) ( y - 3) 

/'(a) /'(B) f'{y) 
where f(y) is as defined in (2.1). 

The formula (3.1) may be considered to be the third-order analogue of the 
Binet formula for the Fibonacci numbers expressed as the quotient of two 
determinants. The third-order number sequence equivalents of (3.3) and (3.4) 
occur in Jarden [7] and Spickerman [11] and (3.5) may be compared to a formula 
of Levesque [8]. 

Starting with (3.1), we can deduce (1.1). Hence (3.1) could be taken as 
the definition of {rn(x)}. This new definition would allow us to introduce 
negative subscripts. 

Binet formulas for {s (x)} include, for 3 * y, 

( 3 . 6) 
where 

( 3 . 7) 

and 

( 3 . 8) 

s„ (x) = A rari + C'yr 

Y a 
(a - 3 ) (a - Y ) 5 

SM (X) 
+ a n-2 

(3 " Y)(3 

3 n + l + gn-2 

f ( 3 ) + 

a ) ' 
and C 

(Y - a ) ( y " 3) 

ytt + 1 _|_ -ytt-2 

/ ; ( Y ) •f'M 

The Binet formula for tn{x) i s 

(3 .9 ) tn(x) = an + 3 n + Yn-

It may be shown that when 3 = Y' i.e., when x = d, 

(3.10) r(d) = (-l)n"12(2-2")/3{(3n + l)2n - (-l)n}/9. 
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The Binet formulas lead to some simple identities involving the diagonal 
functions, for example, 

(3.11) sn(x) = rn(x) + rn_3(x) = 2xrn_l(x) + 2rn_3(x); 

( 3 . 1 2 ) tn_l(x) = rn(x) + 2rn_3(x) = 2xrn_l(x) + 3rn_3(x) = sn(x) + rn_3(x). 

The formulas also give the following relations with the Fibonacci and Lucas 
numbers, {fn} and {ln}i 

rn(-l) = i-»n+Hfn + 2 ~ 1) 
r_n(-D = fn_2 + (-1)" 

sn(-l) = 2{-ir^fn 

*-*(-!> = *fn 
tn(-l) = (-Dn(ln + 1) 

(3.13) 

4. Determinantal Generators for the Diagonal Functions 

Let us now introduce a new sequence {§ (x)} of determinants of which the 
first few members are: 

<h (x) I 2x\ , cj)9 (x) 2x 1 
0 2x 

, cj)3(x) 2x 
0 
1 

1 
2x 
0 

0 
1 
2x 

The nth term is defined thus: 

(4.1) A (x): ci pp Z.X 

\"r,r + l = * 

Mr,r-2 = 1 

[drc = 0 

for v = 1, 

for r = 1, 

for r = 3, 
otherwise 

2, . 

2, * 

4, . 

. . , n 

. . , n -

. . , n 

• 1 

where drc is the entry in the rth row and cth column. It may be proved by in-
duction that, for n > 0, 

(4.2) <S>n(x) = rn+l(x). 

The sequences {$*(x)}s {cf)**(x)} are defined similarly, except that 

dl2 = 2, 3, respectively. 

Induction shows that, for n > 0, 

(4.3) (J)* Or) = sn + 1(x); 

(4.4) <)>**(*) = *„(*)• 

Next we introduce a further sequence {n (#)} of which the first few members 

nx (̂ ) I 0 J , T)2(X) = 0 1 
2x 0 

, Tlq(^) = 0 1 0 
2x 0 1 
1 2x 0 
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The n t h term i s s p e c i f i e d t h u s : 

(4 .5 ) r\n(x)i \^TiV + i 

0 
Induction may be employed to prove that 

1 

2x 

1 

for v = 1, 

for v = 2, 

for r = 3, 

otherwise 

2, . 

3, . 

4, . 

. ., n 

.. , n 

. ., n 

(4.6) n (aO -n-2 (X). 

From these determinants, some new determinantal generators for Fibonacci 
and Lucas numbers may be derived, namely: 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

4>n(-l) = (-l)nCfn+3 - 1) from (3.13) and (4.2) 

cj>*(-l) = (-Dn2/n+1 from (3.13) and (4.3) 

$*n*(-D = (-DnUn + 1) from (3.13) and (4.4) 

nn(-D - fn + (-1)* from (3.13) and (4.6) 

5. Explicit Summation Expressions for Diagonal Functions 

It is assumed in what follows that n is sufficiently large so that all the 
subscripts are greater than or equal to -1. Repeated application of the 
formula in (1.1) gives the lines below: 

(5.1) rn(x) = 2xrn_l(x) + rn_3(x) 

= (2x)2rn_z(x) + rn_3(x) + (2x)rn_Li(x) 

= {(2x)3 + l}rn_3(x) + (2x)rn_L{(x) + (2x)2rn_5(x) 

= {(2x)^ + 2(2x)}r_Ax) + (2x)zv_, (x) + {(2x)3 + l}r Ax) - n-h n-by 

= {(2x)5 + 3(2x)2}rn_5(x) + {(2x)3 + l}rn_s(x) 

+ {(2x)4 + 2(2x)}rn_7(x) 

= {(2x)6 + 4(2x)3 + l}Pn_6(x) + {(2X)14 + 2(2x)}vn_7(x) 

+ {(2x)5 + 3(2x)z}rn_Q(x) 

One formula suggested by these lines is: 

( 5 . 2 ) r(x) 
[J/3] . 

• _ n \ 
2i 

: 0 ^ 
) ( 2 x ) ^ " 3 4 p n _ J . ( x ) 

[ ( j - 2 ) / 3 ] 

i = 0 X 

K J - D / 3 ] . 

i = 0 

J 2 

J " 1 

2i 

2 i 

( 2 x ) ^ ' - 2 - 3 i > p (a?) 
n-j-1 

)(2x)J-1- -n -j'-Z (X) 

This may be proved by i n d u c t i o n . Put j + 1 

(n-l)/3, 

n in (5.2) to get 

(5.3) rfo) 
i= o 

since r„(x) = p_1(x) 

s c 1 
i 

2i y2x)n~l- 3i 
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By subs t i tu t ing (5.3) in (5 .2 ) , i t i s found that 
(5.4) rn(x) = r.+ l{x)Tn_.{x) + Tj _l(x)vn_j_l(x) + r. {x)v- _n_2(x) 
or 
(5.5) rm + n(x) » rm+l(x)rn(x) + x>m_l(x)vn_l{x) + vm (x)rn_2(x). 

The identity (5.5) is similar to one found in Agronomoff [1] and Jarden [7] for 
third-order sequences of numbers. 

Other explicit expressions for the diagonal functions include 

[ ( n - 2 ) / 3 ] t _ 
— 'n - I - i \ , o „ x „ - 2 - 3 i (5.6) r_2n_l(x) - Eo (n

2",+"/)(^) 

(5.7) p_2 n(^) = £ ( n ^ ^ ( - 2 * ) -

t ( n - l ) / 3 ] n - 1 - iin - 2 - 2i\ (5.8) *„(*) = (2a?)" "I + Z n . " T " 2 1 2 t ) ( 2 x ) - " l - 3 ^ 

i= 0 
(5.9) s_2n(x) = _£ 2i + 1 ( 2i ) { ~ 2 X ) 

E(w + D/3] n + i + £ , _ • N 

(5.10) s.^Gn) = (-2^ + l + £ ^i {u - i)("2^n + 1 " 3 i 

[n/3] _ , „ . 
(5.ii) *„(*> = E r ^ ( i ) ^ B _ 3 i 

[n/3] 
(5.12) *_,„(*). E ^ 7 ( n

2 r ) ( - 2 * ) B 

i = 0 

(5.13) *.,„.,(«) = [ C " E / 3 ] ^ ^ ( " "+M(-2,)«-1-3. 
z n x ^ 0 n - -L\2I + 1/ 

If the method used to prove (5.3) is applied to the other sequences of Pell 
diagonal polynomials, then it is possible to prove that 

(5.14) sm+n(x) = rm+1(x)sn(x) + rm_l(x)sn_1(x) + rm (x)sn _z(x); 
(5.15) tm + n(x) = rm+1{x)tn(x) + rm_1{x)tn_1{x) + r,d)t„.2(x). 

The formulas (5.3) and (5.6)-(5.13) lead to some new explicit expressions 
for the Fibonacci and Lucas numbers: 

[(n-D/3] /vi , „.. 
(5.16) fn + 1 - 1 = Z ("!)'( " \~ 2^2"-l-3^ 

-£ = 0 

t(»z2)/3] ,„ _ i _ 7v o o. (5.i7) / ,„_,-!= EO ( B
2 v + r ) 2 " 

(5.18) fZn + 1 = £ % i
t - ) 2 - 3 , 

i= 0 

(5.19) f f , - 2 - 2 +
 I(^/31»JLJJLil(»-2-2tj(_1)i2fl 
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[(n-l)/3] n . i . J _ -, • 

(5.20) f = Y U ^ n I " ^ 2 n - 2 " 3 ^ 

„ [(n + D/3] n + 1 + i, n _ 7* \ Q. 
(5.21) f2n + l = 2n+ £ -_±(^_^)2n-^ 

in/3] 

. . 2i ^ = 1 

ft - 2-£- > 
(5.22) £n + 1 = £ — ^ T 7 ( n v ^ ) ( - D i 2 w 

v-n n - 2-zA "Z- / 

[(n-l)/3] o , i • x 

(5.24) A2 B + I . z 3 1 -^r-v^ 
ln tT0 n - ̂ \ 2^ / 

By Descartes1 Rule, rn(x) can have no positive roots and, at most, 
[ (ft - l)/3] negative roots. It is believed that this maximal number of roots 
is, in fact, the actual number of roots. We shall attempt to prove this in 
some future paper. 
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