ON FIBONACCI PRIMITIVE ROOTS

J. W. Sander

Universität Hannover, Welfengarten 1, 3000 Hannover 1, Fed. Rep. of Germany
(Submitted March 1988)

1. Introduction

In [6] D. Shanks introduced the concept of a Fibonacci Primitive Root (FPR) $\bmod p$, i.e., an integer g which is a primitive root mod p and satisfies the congruence $g^{2} \equiv g+1 \bmod p$. He proved some properties of FPR's, for instance: If for a prime $p, p \neq 5$, there is an FPR mod p, then $p \equiv \pm 1 \bmod 10$. He also made the following conjecture:

Let
and

$$
\begin{aligned}
& F(x)=\operatorname{card}\{p \leq x: p \in \mathbb{P}, \underset{g}{\exists} g \text { is } \operatorname{FPR} \bmod p\}, \\
& \pi(x)=\operatorname{card}\{p \leq x: p \in \mathbb{P}\} .
\end{aligned}
$$

Conjecture: As $x \rightarrow \infty$,

$$
\frac{F(x)}{\pi(x)} \sim C,
$$

where $C=\frac{27}{38} \prod_{p \in \mathbb{P}}\left(1-\frac{1}{p(p-1)}\right)$.
Note that

$$
\prod_{p \in \mathbb{P}}\left(1-\frac{1}{p(p-1)}\right)=0.3739558136 \ldots
$$

is Artin's constant.
By a theorem of DeLeon [3] and deep-lying work of Göttsch [4] using methods of Hooley [5] on Artin's conjecture, we will prove the Conjecture above on the assumption of a certain Riemann hypothesis, namely,

Theorem: Let $\rho=(1+\sqrt{5}) / 2$, ζ be a primitive $2 n^{\text {th }}$ root of unity, where n is a positive integer, and C be defined as in the Conjecture. If the Riemann hypothesis holds for all fields $\mathbb{Q}(\sqrt[n]{\rho}, \zeta)$, then

$$
\frac{F(x)}{\pi(x)}=C+O\left(\frac{\log \log x}{\log x}\right) .
$$

2. Preliminaries

Let $\left(f_{n}\right)$ be the classical Fibonacci sequence, i.e.,

$$
f_{0}=0, f_{1}=1, f_{n+2}=f_{n+1}+f_{n} \quad(n \geq 0) .
$$

An easy pigeon-hole principle argument yields the periodicity of (f_{n}) mod m for any integer $m>1$. Let $\lambda(m)$ be the length of the smallest period mod m.

Lemma 1: ([3], Theorem 1) Let $p \neq 5$ be a prime. Then there exists an FPR mod p iff $p \equiv \pm 1 \bmod 10$ and $\lambda(p)=p-1$.

The following lemma has been proved by Göttsch [4]. A rather obvious generalization which, however, is more accessible has been given by Antoniadis [1].

Lemma 2: ([4], Kor. 2.10; [1], Satz 2 and Kor. 4) Let $A(x)=\operatorname{card}\{p \leq x: p \equiv \pm 1 \bmod 10, \lambda(p)=p-1\}$.
Under the assumption made in the Theorem, we have

$$
A(x)=C \frac{x}{\log x}+O\left(\frac{x \log \log x}{(\log x)^{2}}\right)
$$

where C is defined in the Conjecture.
It should be remarked that, without assuming the Riemann hypothesis, the applied methods only give upper bounds for $A(x)$ (see [4]). These are useless with regard to the Conjecture.

3. Proof of the Theorem

Since there is an FPR mod 5, we have, by Lemma 1 , for $x \geq 5$,

$$
F(x)=1+A(x)
$$

Applying Lemma 2, we get

$$
F(x)=C \frac{x}{\log x}+O\left(\frac{x \log \log x}{(\log x)^{2}}\right)
$$

By the Prime Number Theorem (see, e.g., [2]),

$$
\pi(x)=\frac{x}{\log x}+O\left(\frac{x}{(\log x)^{2}}\right)
$$

Thus,

$$
F(x)=C \pi(x)+O\left(\frac{x \log \log x}{(\log x)^{2}}\right)
$$

which implies the Theorem.

References

1. J. A. Antoniadis. "Über die Periodenlänge mod p einer Klasse rekursiver Folgen." Arch. Math. 42 (1984):242-252.
2. H. Davenport. Multiplicative Number Theory. 2nd ed. New York-HeidelbergBerlin: Springer-Verlag, 1980.
3. M. J. DeLeon. "Fibonacci Primitive Roots and the Period of the Fibonacci Numbers modulo.p." Fibonacci Quarterly 15 (1977):353-355.
4. G. Göttsch. "Über die mittlere Periodenlänge der Fibonacci-Folgen modulo p." Dissertation, Hannover, 1982.
5. Ch. Hooley. "On Artin's Conjecture." J. Reine Angew. Math. 225 (1967):209220.
6. D. Shanks. "Fibonacci Primitive Roots." Fibonacci QuarterZy 10 (1972):163168.
