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Introduction 

We present an approach to the Fibonacci numbers by considering finite par-
tially ordered sets (posets). The nth Fibonacci number, Fn can be interpreted 
as the number of ideals in a very simple poset, usually called a fence. 

The purpose of this note is not to prove new theorems about the sequence 
{Fn}. However, we wish to demonstrate that the approach has several 
advantages. By attaching to each Fibonacci number a geometrical object, the 
number gets an additional dimension, that might be of value in proving 
identities for the Fibonacci numbers. 

While, in general, it may be difficult to count the number of ideals in a 
poset, the simple structure of a fence enables one to calculate the number of 
ideals in several different ways. 

Even the simple partition of the ideals in a fence into two classes, those 
that contain a given element x, and those that do not contain x, can be used 
to show properties of the Fibonacci numbers that usually are verified by an 
inductive proof. This may, in some cases, add to our understanding of "why" 
the proof is valid. 

Another advantage is that, after having established that Fn is the number 
of ideals in a fence with n elements, we have at our disposal theorems from 
the general theory of posets, see for instance [2]. 

Preliminaries 

Our terminology on posets is, with a few exceptions, standard, and we 
refer to for instance Birkhoff [1], but for the convenience of the reader, we 
define briefly the basic concepts. 

We let [n] denote the set {1, ..., n}. 
In this paper a partially ordered set (poset) is a finite set equipped 

with a relation > that is reflexive, antisymmetric, and transitive. 
An ideal in a poset P is a subset I of P such that, for any x E P and any 

y E I, if x > y then x e J. Both 0 and P are ideals in P. Actually, an ideal 
in the present paper is usually called an upper ideal, dual ideal, or filter. 

For any poset P, Id(P) denotes the number of ideals in P. Moreover, 
Id(x), Id(x & y), and Id(x & -i y) denote the number of ideals (in P) that 
contain x, contain x and y, contain x but not y, respectively. 

Given a subset A of a poset P, let 4̂* denote the set of elements x E P 
such that x > a for some a E A, and A* denotes the elements x E P such that 
a > x for some a E A. 

Any subset A of a poset P, may be considered as a poset in itself with the 
inherited relations from the set P. Hence, Id(A) denotes the number of ideals 
in the poset A. This should not be confused with the earlier definitions of 
Id(x), Id(x & y), etc. 

The elements x and y in a poset P are path connected if there exists a se-
quence of elements x^ , . . . , xn in P such that x^ = x, xn = y9 and x^ and x^+i 
are comparable for each 1 <i <n - 1. Two subsets A and B of a poset are separ-
ated if x and y are not path connected for any x E A and y E B. 
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The fence Tn w i th n e lements i s the pose t 
Tn = {xi > x2 < x3 > > •• < (or >) xn}. 

Let TQ refer to the empty fence, with one ideal only. 
A fence can be pictured as a lattice path; we show T5 in Figure 1. 

xi x3 £5 

\ /v 
x2 x4 

FIGURE 1: T 5 

The following observation, whose simple proof is omitted, will be found to 
be very useful. 
Lemma 1: Let A be a subset of the poset P. Then: 

1. The number of ideals in P that contain A equals Id(P - A*). 
2. The number of ideals in P that are disjoint with A equals Id(P - A*). 
3. If P = A U B, where A and B are separated subsets of P, then 

Id(P) = Id{A)Id{B). 
As an illustration of Lemma 1, we shall find Id(x3) and Id(^x$) for the 

fence r5. In order to find Id{x3) , Lemma 1.1 says that one shall erase all y 
such that y > x3, and find the number of ideals in the remaining poset. In 
this case, we only erase x3 itself, and are left with a poset consisting of two 
separated parts, each being isomorphic to T2. Hence, by Lemma 1.3 it follows 
that Id(x3) = Id1{Y2). 

In order to find Id(~^Xo)s one must erase {X3}* = {x 2, x 3, x^}. One is left 
with two separated copies of r^; thus, Id(r^x3) = Id2(Ti). Hence, 

Id(T5) = Id2(T2) + Id1{Yl). 
Ideals in a Fence 

Let FQ = 1, Fi = 2, F2 = 3, etc., refer to the Fibonacci numbers, and Tn to 
the fence of cardinality ft. 

Theorem 1: Id(Tn) = Fn for n = 0, 1, 2, . . . . 
Proof: By definition Id(T0) = 1, and trivially Id(Ti) = 2. We shall show that 

Id(Tn) = Id(Tn-i) + Id(Tn.2) for n > 2, 

In general, 

Id(Tn) = Id(xn) + Id(^xn). 

If n is even, it follows from Lemma 1 that 

Id(xn) = Id(rn_2) and Id(r>xn) = JdCr^-x), 

and if ft is odd, Lemma 1 yields that 

Id(xn) = Id(Tn-i) and Id(r-xn) = Id(r„_2). 

This proves Theorem 1. 

We shall consider a few simple applications of Theorem 1. 

Corollary 1: Fn = Fi.1Fn.i + Fi.1Fn-i-l for 2 < i < ft. 
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Proof: Follows from Theorem 1, Lemma 1, and the i d e n t i t y 

Id(Tn) = Id(xi) + Id(-^Xi). 
In the remainder of this note we simplify our notation by letting the nodes 

of Tn be denoted by 1, . . . , n instead of X\, ..., xn. 

Corollary 2: 
F2n-l = #{ (al> • • • » aT<) \ai i s o d d a n d ai ~ 1 a n d al + e ' ' + afe = 2n + 1}. 

Proof: A subset X of [n] can uniquely be given by an odd (i.e., k - odd) tuple 
(aj, ..., afc) of positive integers whose sum equals n + 2. To such a tuple we 
assign the set X defined by: a^ is the smallest number belonging to X, a\ + a 2 
is the smallest number greater than ai that does not belong to X, a\ + a^ + £3 is 
the smallest number after a\ + a2 that belongs to X, etc. 

The following example illustrates the correspondence. Let n = 11 and let 
{a 1, . .., (25) = (2, 3, 2, 2, 4). This vector corresponds with the set {2, 3, 
4, 7, 8}. 

It is easily seen that by this correspondence, the set corresponding to a 
vector (a]_, ..., afe) is an ideal in Tin-l ^^ each a^ is an odd integer. 

This proves Corollary 2. 

Coronary 3: F2n.l - £ (w + *) 

Proof: By Corollary 2, i^n-l equals the number of tuples (a^, ..., afe) of odd 
positive integers whose sum is 2n + 1. Put aj = 2bj - 1, and since & is odd, 
there exists an integer i such that k = 2i + 1. One derives the condition 

b1 + • • • + 2?2i + i = n + i + 1 
and since 

#{(<?!, . . . , c^)\c^ > 1 and ex + . . . + ̂  =/??} = (? _ J . • 

Corollary 3 follows. 

Finally, let us add that many more identities can be shown in this simple 
manner. 

A slightly more complicated application is achieved by defining an equiv-
alence relation on T2n-i by declaring two ideals to be equivalent if they con-
tain the same odd numbers in {In - 1]. Counting the number of ideals in each 
equivalence class leads to the following identity, whose proof is left to the 
reader. 

^ -1 + E (i: X+1 ~ s ) 2 - , 
where the sum is over all (s s k) such that s > k > 1 and s + k < n + 1. 
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