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1. Introduction 

A Fibonacci sequence is defined by two initial terms, F(l) and F(2), to-
gether with the recursion equation 

(1) Fin + 1) = Fiji) + F ( n ~ l ) s n = 2 , 3S 4, . . . . 

A closed form expression for the nth Fibonacci number is given by 

(2) Fin) = 4= 1 + /5 2_ 
/5 

i - /r 
1, 2, 3, 

If we let F(l) = F{2) - 1 in equation (1), then we get the well-known sequence 
of Fibonacci numbers 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... . 

Because Fin) is defined recursively in (1), we must know F{n) and F{n - 1) in 
order to find Fin + l)n Therefore, to find F(1Q0) for example, we must first 
compute F(3) , F(4), . . ., , F (98) , F(99) . This becomes a formidable computing 
task as n gets large. Finding F (n) for large values of n from equation (2) is 
also a laborious task. Computing time, machine limits, and round-off error are 
problems that must be considered. 

In this paper we assume that m terms of the Fibonacci sequence are known. 
To construct a formula that generates the m terms, one can use the Lagrangian 
approach to obtain the collocation polynomial. This method is based on the 
following theorem from [3]. 

Theorem: Let (xk, f k ) , k = 0, 1, 2, ..., n, denote (n + 1) points that would 
lie on the graph of a function. Then there exists a unique collocation poly-
nomial p(x) = ]C-_ a-x- whose graph passes through the given (n + 1) points. 

The Lagrangian method may require sophisticated numerical techniques in 
order to produce the collocation polynomial. However, the finite differences 
procedure and the examples presented here are at a level that can appeal to 
high school teachers with a desire to add interesting exercises involving 
Fibonacci numbers (or any sequence). Therefore, the emphasis in this paper is 
not on the derivation of the formula, but on the application of the formula to 
reproduce the given m Fibonacci numbers. In addition, the formula presented 
is in a more directly useable form than is usually available, and its purpose 
is different from equations (1) and (2). In some applications, such a formula 
may prove to be quite useful. 

2. A Polynomial Formula Using Finite Differences 

In this section we describe a general method for constructing a polynomial 
that generates the terms of a sequence. Let s^, S2$ ...5 sm be the terms of a 
sequence. Form the successive order differences as shown in Table 1. 
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n 

1 

2 

3 

4 

5 

6 

Sequence 

* i 

«2 

^3 

s4 

«5 

5 6 

Terms 
1st 

— D\ 

— Dl 

Dl 

Dl 

Dl 

TABLE 1 

2nd 

Dl 

n2 
JJ2 

Dl 

Dl 

Difference 
3rd 

-D? 

D\ 

Dl 

4th 

- D\ 

- D\ 

5th ••• 

Dl 

where 

D\ = 52 - si 

D\-s^- S2 

Dl = D\ - D\ 

D\ = Dl-D] 

D\ = Dl - D\ 

D\ = Dl-D\ 

> = Dl I3 - D2 
Jm-3 — Um.-2 

We assume that some order difference becomes constant. 
= 1, 2, 3, ..., m - i , for some i = 1, 2, . .., m 

for all j. 

That is, £>• £> 

difference Z^|+1 is zero 
< m 1 be a positive integer such that D-

2. Thus, the next order 

is zero for all j = 1, 2, Let k 
. . . , m - k. The general term of the original sequence can now be expressed by 
a polynomial in n. The polynomial formula that generates the sequence is based 
on the above finite difference table and is given by 

(n - l)(n - 2) ̂ 2 . (n - l)(n - 2)(n - 3) 
(3) s-, .+ (n l)D\ + 

(n - 1) (n 
2! 

2) 

2) 2 
— L D \ + 3! 

-£; 

(w - (fc 
(fc - 1 ) ! 

1)) k- 1 

Equation (3) is in terms of s, and D 
"-1", the leading first terms of the various 

complete derivation of (3).is given in [1] and [2]. 
D\-

the first term of the sequence, auu ^ 
order differences. The 

Equation (3) assumes that the order differences, D- 1, 2, m 
However, we have found that 

- t, 
this are zero for some £ = 1, 2, ..., w - 1. 

condition is not necessary for the derivation of a generating polynomial. 
Equation (3) can be extended in order to construct a polynomial that generates 
the terms of any sequence whether or not the order differences, Df9 j = 1, 2, 

m 1, are zero for some t 
mc 

the sequence if given by 

1, 2, 77? 1 
the sequence, s^9 and the differences Z?J, D^-, 

We use the first term of 
The general term of 

(4) sl + {n - l)D[ + 

(n - 1) (n 

(n - 1) (n 
2! 

2) 

2) 2 (n - 1) {n - 2) (n 
~3l ~~ ^ 

(77? - 1 ) ! 
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3. Examples 

In this section we apply equation (4) to several sequences. Consider the 
first four terms of the Fibonacci sequence, 1, 1, 2, 3. Form the order 
differences as shown in Table 2. 

Sequence 

TABLE 2 

Differences 

Thus, s 1 = l , D\ = 0, D\ = l9 and d\ = -1. Substituting these values into (4) 
yields 

(5) 1 + (r D(0) + 
(ft - 1) (ft _2)_(1) + (n ~ l)(ft 2) (ft - 3) 

(-1) 

-i(-ft3 + 9ft2 - 20ft + 18), 

For ft = 1, 2, 3, 4, equation (5) yields the Fibonacci numbers 1, 1, 2, 3. 
Using (5), it is possible to generate F(4) without having to compute F(l), 
F(2) , F (3) as in the recursion equation (1). Note that (5) does not generate 
the correct term F(5) = 5 for ft = 5. This procedure produces a polynomial that 
generates only the terms of the initial sequence. 

We do not have to begin the sequence of terms with F(l) in order to apply 
(4). For example, consider F(10), F(ll), F(12), F(13), F(14), namely, 55, 89, 
144, 233, 377. Table 3 contains the order differences. 

Sequence 

TABLE 3 

Differences 

1 

2 

3 

4 

5 

55 

89 

144 

233 

377 

34 

55 

144 

21 

34 

55 

13 

21 

Here, sl = 55, D\ = 34, B\ = 21, D{ = 13, D\ = 8, sl = F(10), s2 = F(ll), s3 = 
F(12), sh = ^(13), s5 == F(14). Using (4), we obtain a polynomial that generates 
the sequence: 

(6) 
(ft - 1) (ft 

55 + (ft - 1)(34) + 

(ft - l)(ft - 2)(ft - 3)(ft - 4) 
+ 24 

•^(21) + ( n " 1 ) ( n 2) (ft - 3) 

(8) 

(13) 

r(2ft^ 7ft3 + 55ft2 + 58n + 222) 

For ft=l, 2, 3, 4, 5, equation (6) yields the Fibonacci numbers 

F(10) = 55, F(14) = 377. 
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Once again we can generate any single term of the sequence without computing 
previous terms. For example, in order to generate F(14) = 377, we let n = 5 in 
(6). As in the previous example, we do not obtain' F(15) = 610 by letting n = 6 
in (6). 

Suppose we are given a longer sequence of Fibonacci numbers. To obtain the 
generating polynomial, the above procedure suggests we must calculate all the 
order differences. Fortunately, this is not the case. 

Consider the sequence consisting of the first ten Fibonacci numbers and the 
order differences given in Table 4. 

F(l) 

0 

TABLE 4 

Fibonacci Numbers 

F(2) 
1 

°\ 

F(3) 
2 

°\ 

F(4) F{5) F(6) F(7) 
3 5 8 13 

Differences for Equation (4) 
n3 r>h n5 n6 

F(8) 
21 

»I 

F(9) 
34 

"? 

^(10) 
55 

n -1 13 -21 

There is a definite pattern in the differences given in Table 4. The lead-
ing differences alternate in sign beginning with D and the absolute value of 
these differences yields the first eight Fibonacci numbers 1, 1, 2, 3, 5, 8, 
13, 21. The following examples further illustrate the pattern in the leading 
differences. 

Consider the sixteen Fibonacci numbers beginning with F(5) = 5 through 
F(2) = 6765. The Fibonacci numbers and the leading differences are given in 
Table 5. 

TABLE 5 

Fibonacci Numbers 

F(5) 
5 

F(13) 
233 

F(6) 
8 

W4) 
377 

F(7) 
13 

F(15) 
610 

F(8) 
21 

F(W 
987 

Differences 

F(9) 
34 

F(17) 
1597 

W O ) 
55 

F(18) 
2584 

for Equation (4) 

mi) 
89 

^(19) 
4181 

F(12) 
144 

F(20) 
6765 

s l Dl Dl Dl Dl Dl Dl Dl Dl Dl Dl° Dll Dl2 Dl3 ^ Dl5 

5 3 2 1 1 0 1 -I 2 -3 5 -8 13 -21 34 -55 

From Table 5, we see that 

D\ = F(4), D{ = F(3), Dl = F{2), D\ = F(l). 
After D^9 the differences follow the same pattern of differences as in the pre-
vious example. That is, the differences alternate in sign, and the absolute 
value of the differences yields the first ten Fibonacci numbers. 

Therefore, suppose we consider a sequence of sixteen Fibonacci numbers 
beginning with î (10) = 55. Then the differences are found quickly and simply 
without computation from the patterns in the above examples. The differences 
for (4) are: 

34 
*1 
21 13 

D\ Dl °l °l D\ 
1 

Df 
1 0 

D\l 
1 

0p 2? J 3 D\* D\$ 

Substituting these values into (4), we obtain a polynomial in n which generates 
the sixteen Fibonacci numbers F(10) = 55 through F(25) = 75025. 
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These examples demonstrate a technique for obtaining a polynomial that gen-
erates any finite sequence of Fibonacci numbers. The leading order differences 
must be calculated in order to determine the polynomials but they follow a 
discernible pattern. The resulting polynomial generates only those terms in 
the initial sequence and is useful in some applications. 
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***** 

(continued from page 140) 

The reviewer has some problems with comments made by the authors. First, 
the authors could, I believe, have misinterpreted the quote by Schalau and 
Opolka which is given in the Foreword. The Pythagorean triple problem was 
completely solved in antiquity if by this statement Schalau and Opolka meant 
that a method had been developed which totally solved the problem of finding 
all Pythagorean triples. If Schalau and Opolka meant that no new results could 
be found, then the authors are correct. I believe that the former is the case. 

The authors also claim that there is no technique for systematically gen-
erating all Pythagorean triples by the old method. This is, I believe, a 
matter of opinion. The reviewer happens to believe that the original technique 
developed by Diophantus is very systematic. That is, (x9 y, z) is a Pythago-
rean triple if and only if x = u2 - V2 , y = 2uv, and z = u2 + V2 , where u > V. 
The problem here is the meaning of "systematic." The authors also feel that 
their method is more time efficient. The reviewer has a problem with this. 
Finding the greatest common divisor of two integers, even when large, is not a 
problem for the computer. It does take time but would it take any more time 
than is needed to go through the contraction method developed by the authors or 
to find the convergents needed for the continued fraction or to pick and 
implement the method (class) that gives the correct value of n? I think not. 

Overall, I would recommend the book and suggest that those interested in 
Pythagorean triples or Pellian equations read it. 

********************************************************* 

1990] 155 


