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1. I n t r o d u c t i o n 

The numbers {Cn(a, b, k)}, defined by 

Cn(a, by k) = Cn_l(a9 b3 k) + C„_2(a, b, k) + k, 
with 6\ (a, b, k) = a, CAa% b3 k) - b9 where k is a constant, have been studied 
in [1]. The Fibonacci sequence arises as the special case Fn = Cn(l, 1, 0), 
while the Lucas sequence is Ln = Cn(l, 3, 0) . The sequence 

{Cn} = {..., 0, 0, 1, 2, 4, 7, 12, 20, ... } , 

where Cn = Cn(Q9 0, 1), has the property that Cn = Fn - 1, the sequence of 
Fibonacci numbers minus one. 

The sequence {Cn} has remarkable divisibility properties since almost every 
term is a composite number and at least one factor can always be named by 
examining the subscript of Cn. Further, {Cn} contains exactly two prime terms, 
and two-thirds of its terms are even numbers. Analogous properties extend to 
the generalized sequence {Cn(a, b, k)}. 

2. Prime Factors of Cn 

First, since F^m gives all the even Fibonacci numbers, C%n is always odd, 
and Co ± 1 is always even, so the probability of choosing an even term from {Cn} 
at random is 2/3. Since Cn = Fn - 1, we can use [2] to prove some theorems in 
one step. 

Theorem 1: For primes of the form p = 5k ± 2, p divides both C -^ and C ^ + l' 

Proof: We have Fp = -1 (mod p) and Fp+l = 0 (mod p) from [2]. Then 

c
P-i = V i - l = V i - (FP + 1} 

whi le 
C 2 P + 1 = f 2 p + l " 1 = < V l ) 2 + (FP + l)FP ~ {FP + 1 } ' 

where a l l terms on the r i g h t - h a n d s i d e a r e d i v i s i b l e by p in bo th c a s e s . 

Theorem 2: For pr imes of the form p = 5k ± 1, p d i v i d e s Cp, C'p + 1» ^ p - 2 ' ^ 2 p - l ' 
C 2 p S and C 2 p _ 3 . 

Proof: We have Fp = 1 (mod p) and Fp _ x . = 0 (mod p ) from [ 2 ] . We w r i t e Cp , 
C 1 , and C 2 i n f ° r i n s i n which p d i v i d e s t he terms on the r i g h t - h a n d s i d e : 

Cp = (Fp - 1 ) , 

S + i = Fv+i " x = Vi + (FP ~ U> 
Cp-2 - Fp-2 - 1 « tfp - 1) - V l * 
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Since 

where p\Fp_iFn_i and p|(Fp - 1) but p does not divide Fp, observe that whenever 
p\(Fn - 1), then pI^p+w-1• L e t n = P> P + * » a n d p - 2 to write that 

P\C2p-l> P\C2p> a n d PlC2p-3* 
Further, a little rewriting lets us prove the following corollary. 

Corollary: If p\Cn9 then pl^+^p-l) s w = 0, ±1, ±2, ..., where p is a prime of 
the form 5k ± 1. 

Proof: From the proof of Theorem 2, if p\Cn, then p|Cn + (p-i)' The corollary 
holds by the Axiom of Mathematical Induction, since whenever p | ̂Vz+w(p - l) * then 

Pr[n+m(p-l)]+(p-D = Cn + (m + l)(p - 1) • 

Theorem 3: I f IT(p) i s the pe r i od of a prime p i n the F ibonacc i sequence modulo 
p , then 

P\CkHp)-i9 P\CkHp) + i9 a-nd P\CkHp) "r^-

Proof: Since 
Ckli(p)+n Cn = ^fen(p) + n ~" ^ > 

and s i n c e p d i v i d e s the r i g h t - h a n d s i d e by d e f i n i t i o n of I I (p) , i f p\Cn, then 
Pl^£n(p)+tt * Theorem 3 fo l lows because C_^ = C^ = C^ = 0. 

Corollary: The prime 5 d i v i d e s ^ O / c - l ' ^2 0£+l5 ^2 0fc+2> a n d ^2 0^ + 8 ' 

Proof: 11(5) = 20, and 5 d i v i d e s C_x, C^, C 2 , and CQ. 

Theorem 4: I f p i s a prime of the form 5k ± 2 , then p |<^(p+ i) _ 2 i f <7 ^ s odd. 
If q i s even, p\Cq(p+ i) . L, p\Cq(p + i) + i> a n d P l ^ ( p + l ) + 2-

Proof: I f p\Cn, then p|Cn + mn(p) as i n the proof of Theorem 3 . From [ 3 ] , i f p 
i s a prime of the form 5k ± 2 , then I I (p ) | 2 (p + 1 ) . Then, p\Cn+2m(p + i) > rn any 
i n t e g e r . Since 

P\Cp-l> P\Cp-l+2m(p + l) = C (2m + l)p + (2m-l) > 
o r , fo r q odd, 

p\Cqp + (q-2) = Cq(p + l) - 2 • 
If g is even, let g(p + 1) = fcn(p) for some /c, since II (p) | 2(p + 1), and use 
Theorem 3. 

Corollary: If p = 5fc ± 2, then 

(i) p divides C(p+2)(p-i)» Cp(p+3)> and Cps(p + 1) _ 2 ; 

(ii) p divides Cp(p+2) , ̂ p2_2, (7p2, and Cp2 + r 

Proof: (i) Take q odd, <? = p, ̂  = p + 2, and q = ps, in Theorem 4. To show 
(ii), take ^ even, q=p+l, q = p - l . 

Theorem 5: If p is a prime of the form 5k ± 1, then 

P l ^ + Dp-OK + Z)' PI £(/* +Dp-(*-!)> a n d P l ^ + Dp-w f o r any integer /TZ. 
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Proof: From t h e C o r o l l a r y t o Theorem 2 , i f p | Cn, t h e n p\C n+m{p _x) . From T h e o -
rem 2 , t a k e ?z = p - 2 , p + 1 , and n = ps and s i m p l i f y . 

C o r o l l a r y ; F o r any p r i m e p , p * 5 , p | C p 2 , p | ^ p 2 + 1 » and p\C 2_2. 

Proof: I f p = 5/c ± 1 , l e t m = p i n Theorem 5 . I f p = 5k ± 2 , u s e t h e C o r o l l a r y 
t o Theorem 4 . 

Theorem 6: I f I I ( j ) i s t h e p e r i o d of any i n t e g e r j , j * 0 , i n t h e F i b o n a c c i 
s e q u e n c e modu lo j , t h e n , f o r a l l i n t e g e r s k, 

J I CkJi(j) - l 5 «7 I CkJiU) + 1 5 a n d ^ I CkJi(j) + 2 ' 

Proof: See the proof of Theorem 3. Notice that any integer will eventually 
divide Cn for some n. 

3. Fibonacci and Lucas Factors of Cn 

Since Cm + n ~ Cm_n = Fm+n - Fm_nS we can write 

(3.1) Cm + n - Cm„n = FmLn, if n is odd, 

Cm + n ~ Cm-n= LmFn > i f n i s e v e n » 

Observe that, if Ln\Cm„n, then L n|C m + n , and Ln has period 2n if n is odd. Sim-
ilarly, Fn has period 2n if n is even. Putting these together with Theorem 6, 
we write 

Theorem 7: If n is odd, L^ divides ^rn-l' ^2rn+ls a n d ^ 2 ^ + 2' while if n is 
even, Fn divides C^pn-l* ^2rn+l5 a nd ̂ 2rn + 2 f ° r a ny integer p. 

Now things are getting exciting. Since we can take n = 2k + 1 to find that 
^lk + 1 divides CL^ + IS Ci+fc + 3 s a nd Ct+fc + i+s and n = 2k to see that F^ divides 
C L ^ - I , CL+^ + IS and £ ^ + 2? notice that Cn is always divisible either by ̂ 2?c + l o r 

by F2k . Now, if /c = 1, i*2 = 1 divides any integer, so take \k\ > 2. Thus, if 
n > 7, or if n < -5, then Cn always has at least one factor smaller than Cn and 
greater than 1 which we can write exactly, so Cn is not prime. We examine the 
sequence from C-^. through Cg: -4, 1, -2, 0, -1, 0, 0, 1, 2, 4, 7, and find that 
the only primes are 2 and 7. 

Theorem 8: The sequence of Fibonacci numbers minus one, Cn = Fn - 1, contains 
only composite numbers for all n > 7 and all n < -5. The only primes which 
appear in {Cn} are C^ = 2 , £g - 7, and |C-2| = 2. 

4. Divisibility of the Generalized Sequence \Cn(a, b, Jc)} 

From [1], the sequence {Cn(a> b3 k)} with initial values C^ ~ a and C^-b 
is given by 

(4.1) Cn(a, b, k) = Cn-l(a, fc, fc) + £n_2(a> ^ ^) + k 

= aFn_2 + M 7 ^ + /cC„(0, 0, 1) 

= #„ +. Zc<7n 

for the generalized Fibonacci numbers En, Hn = Cn(a9 b, 0 ) , and Cn(0, 0, I) - Cn 
of the earlier section. 
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As in Section 3, 

S + n(a' b9 k) " Cm-n\a* b9 k) = (Hm + n ~ Fm-w) + K-(Cm + n - Cm_n)9 

so that we can write 

(4.2) Cm + n(a, b, k) - Cm..n{a, b9 k) = LnHm + kFmLn9 if n is odd; 

Cm + rl(a, b9 k) - Cm_.n(a9 b, k) = Fn(Hm + l + Hm_l) + kLmFn, if n is even. 

Thus, the periods of Fn and Ln are still 2n, where we again distinguish n even 
and n odd. Also, since every nonzero integer eventually divides F-^ for some k9 
every nonzero integer will divide Cn (a, b, k) for some n if {Cn(a, bs k)} 
contains a zero term. If {Cn(a, b, k)} contains two zero terms, in some cases 
we will again have a finite number of primes occurring. 

Theorem 9: If Cq (a, b9 k) = 0, and if a nonzero integer j has period H(j) in 
the Fibonacci sequence, then j \ Cq +mn(j) (a* >̂ ^) f° r a H integers TTZ. 

Theorem 10: If F2m|^(a, 2?, fc), then 

F2m\Cq+hm(a> b> k^> 
and if L2m + l\C'q(a9 b9 k), then 

L 2 m + 1 1^ + ̂  + 2 ^ ' ^' k), 
for any integer /??. 

Now, Theorem 10 gives us some interesting special cases. Notice that if 
Cq(a, b9 k) - 0, and if Cq+r(a, b9 k) = 0, where v is an odd number, then 
{Cn(a, by k)} will contain a finite number of primes, because for n larger than 
certain beginning values, Cn(a, by k) will always be divisible either by F 2m or 

L2m+1> W h e r e F2m * °> ± l > a n d L2m+l * ± l ' 
Without loss of generality, if {Cn(a, b9 k)} has a zero term, renumber the 

terms, taking new starting values, so that 

a = 0 = C1(0y b9 k). 

Then, i f Cr+i(09 b9 k) = 0 for some r > 0, from ( 4 . 1 ) , 

Cr + l(Q, b9 k) = 0 • F P _ ! + bFr + kCr + l = 0, 

where we list some possibilities and special cases. Notice that k = Fr and b = 
-CT+i = -FT+i + 1 always is a solution, and write the resulting 

Cn(a9 b9 k) = Cn(09 -Cr+l9 Fr). 

For v = 1, we have C„(0, 0, 1) = Cn; for r = 2, Cn(0, -1, 1) = C„_2; and p = 3 
gives Cn(0, -2, 2) = 2Cn_23 all the sequence of Fibonacci numbers minus one. 

Consider r = 4 and {Cn(0, -4, 3)} = {..., 0, -4, 1, -2, 0, 1, 4, 8, 15, 26, 
44, 73, 120, . ..}. We can show that 

Cn(09 -4, 3) = -4F„_! + 3Cn = Ln_3 - 3. 

From [2], we have L^-p = 3 (mod p) where p is any prime, so p |̂ 2p ~ 3* and we 
have 

p|C2p+3(0, -4, 3). 

All odd-subscripted Cn(0, ~4, 3) have Fm or Lm for a divisor for some m9 but we 
cannot easily say whether or not {Cn(09 -4, 3)} contains a finite number of 
primes. However, any prime terms will have a subscript of the form 6m, If v 
is even, we cannot determine whether or not {Cn(09 b9 k)} will contain a finite 
number of prime terms. 
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However, for r = 5, {Cn(0, -7 3 5)} contains only two primes, 2 and 7. We 
write Cn(03 -7, 5) for -3 < n < 10: -24, 7, -12, 0, -7, -2, -4, -1, 0, 4, 9, 
18, 32. We observe | CY | = 2 and | C3 | = 7 = C_2- From Theorem 10, 

L2k + l\Cl + ^k+2> L2k + l \C6+hk + 2> F2k\Cl+kk> a n d F2k I ̂ 6 + 4/c ' 
covering every possible subscript, so that Cn(0, -7, 5) always has F2fc or îfc + l 
for a divisor. But F2k - ±1 f o r k - ±19 and î 2fe + l = ±;1- f o r k = 0 and /c = -1. 
So terms Cn(03 -7, 5) for n > 10 or n < -3 have a divisor greater than 1 and 
less than Cn(03 -7, 5) and thus are not prime. For v = 7, in a similar 
fashion, we find only the three primes 7, 73, and 79 in {Cn(0, —20, 13)}. If 
v - 9, all the terms of (Cn(0, -54, 34)} are even, but, if we instead consider 
{Cn(0, -27, 17)}, we find 

|C5| = 13 = Cll9 \CQ\ = 11, and Clh = 107 

as the only primes. Finally, v = 11 has only two primes 

|C5| = 73 and |C8| = 79, 

but v = 13 is the best of all, containing no primes at all! 
From the preceding discussion, we can write the following theorem. 

Theorem 11: If {Cn(a3 b, k)} has Cl(a3 b, k) = 0 and Cl + r(a , b, k) = 0 for r 
an odd integer, then \Cn(a9 b3 k)\ is prime for only a finite number of values 
for n. 

Now, recall from above that the probability of choosing an even term from 
{Cn} = {Cn(0, 0, 1)} is 2/3. {Cn(a3 b, k) } has the same property only when k 
is odd, and when at least one of a or b is even. These results can be verified 
by examining Cn(a3 b3 k) from (4.1) for n = 3m, 3m + 1, and 3m + 2, where we 
always take k odd. 

( i ) Co ( a , b3 k) = a F q 9 + bF' , + kC~ . ' • 
v y 3m v 5 5 / 3m-2. 3m-1 3m 

N o t e t h a t kCo)m, F-3m-\, and F^m-2 a r e a H ° d d . T h e n , i f a and 2? h a v e t h e same 
p a r i t y , C3m{a3b3 k) i s o d d , w h i l e i f a and 2? h a v e o p p o s i t e p a r i t y , C3m{a3 b, k) 
i s e v e n . 

( i i ) C3m + 1(a, b, k) = a F ^ + bF3m + kC3m + 1 . 

Here both bF 3m and kC^ + i are always even, while i^-i is odd, soC3 m + i(a, 2?, k) 
is even or odd as a is even or odd. 

C111) C 3 m + 2 ^ ' &> fe> = ^ 3 m + & F 3 m + l +
 kC3m + 2-

Now, aF3m and kC^m+2 are always even, while F3m + i is odd, so £3^+2(^5 b, k) is 
even or odd as b is even or odd. 

Putting the three cases together, first notice that, if all of a, b3 and k 
are odd, Cn(a9 b3 k) is always odd. If a and b are both even, C3w(a, b3 k) is 
odd but C3m + i(a3 b3 k) and £3^+2(a, 2?, /c) are both even. If a and b have 
opposite parity, Co>m{a3 b3 k) is even, and either C3m+i(a3 b, k) or £3^+2(^5 »̂ 
fc) is even, but not both. Then, if k is odd, and at least one of a or b is 
even, the probability that a term chosen at random from {Cn(a, b, k)} will be 
even is 2/3. 

Next, re-examine the three cases for k even. If a, b3 and k are all even, 
Cn(a3 b3 k) is always even, a trivial result. In (i) , kC$m is even, while 
F3m_2 and F3m_i are odd, so that C$m(a9 b 3 k) is odd if a and b have opposite 
parity, but even if a and b have the same parity. From (ii) , both bF^m and 
kC3m + l are even, while F3m„l is odd, so Cr3m + 1(a, b3 k) is even or odd as a is 
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even or odd. From (iii), "both aF^m and ̂ £3^+2 are even, while F$m + i is odd, so 
^3m+2(a> b 9 k) is even or odd as b is even or odd. Putting these results 
together, if k is even, and a and b have opposite parity, then C^m(a, b9 k) is 
odd while exactly one of 6Y3m + 1(a, b9 k) or £3^+2 (<z> b, k) is odd. If k is even 
and both a and Z? are odd, C^m(a9 b9 k) is even but both C^m+i(a9 b9 k) and 
^3^ + 2(̂ 5 b, k) are odd. Thus, if k is even and at least one of a or b is odd, 
the probability of randomly choosing an even term from {Cn(a9 b9 k)} is 1/3. We 
summarize in Theorem 12. 

Theorem 12: If /c is odd, and at least one of a or b is even, the probability 
that a term chosen at random from {Cn (a, b9 k)} will be even is 2/3. If k is 
even, and at least one of a or b is odd, the probability that a term chosen at 
random from {Cn(a9 b9 k)} will be even is 1/3. If a, b, and k are all odd, 
Cn{a9 b9 k) is always odd. 
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