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1. Introduction 

One of the great advances in mathematics recently has been in the analysis 
of nonlinear dynamical systems. In this paper we will study the properties of 
a set of polynomials in two variables using techinques from nonlinear dynamic 
theory. These polynomials are variants of the class of generalized Fibonacci 
polynomials (see, for example, [7]) defined by 

PQ(ZI> s 2) = 0, P\(zi> 3 2 ) = 1, 

Pn+1(sl3 z2) = (1 - s1)Pn(s1, z2) ™ (s2 ~ Si)P„_i(si, z2), n > 1. 
The results derived here are not new in the sense that they can be proven from 
existing work on generalized Fibonacci polynomials but the approach is entirely 
novel in that it provides a link between the analysis of generalized Fibonacci 
numbers and the theory of dynamical systems via the iteration of rational func-
tions of degree one. 

Fundamental to the concept of the analysis of nonlinear dynamical systems 
is the functional iteration of the form 

(1) xn + l = f(\, xn), 
where A is a parameter that can be varied. In this paper we will consider the 
iterative behavior of the general rational function of degree one given by 

1 - X i X 
(2) f(k, Ax, A2, x) = k , 

1 — A2X 
where ks AT, and A2 can be complex, and relate these iterations to a family of 
polynomials, defined in two variables by 

(3) P0(Zi* s2) = 0* pi(si» s2> = lj 

Pn+l(z1, z2) = (1 - zl)Pn{zl, z2) ~ (̂ 2 " zOpn-l^l» s2), n > 1. 
We will also consider as a special example the case when k = 1 and Ax = 0, so 
that 

(4) f(X, x) - r 4 ^ , 
and relate the iterations of this class of functions to a family of polynomials 
defined by 

(5) PQ(z) = 0, Pl(z) = 1, P„ + i0s) = Pn(s) - zPn-l(z), n > 1. 
We note that in our terminology Pn(05 z) = Pn(z) * The polynomials presented in 
(3) and (5) are in fact variants of two well-known classes of polynomials known 
as generalized Fibonacci polynomials and Fibonacci polynomials, respectively. 

In Section 2 we will present a review of some of the known results concern-
ing generalized Fibonacci polynomials and show that they can be generalized to 
the polynomials defined in (3) and (5) . The analysis in Section 3 will prove 
some of these results anew but using a completely different approach. This 
approach is based on the concept of topological conjugacy. Two maps f:A -> A 
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and g:B + B are said to be topologically conjugate if there exists a homeo-
morphism h : A •+ B such that 
(6) h O f = g .0 h. 
Topologically conjugate maps are equivalent in terms of their dynamics (see, 
for example [4]). Now, if g is the function us, then (6) is called the Schro-
der Functional Equation (SFE). It is well known (see, for example, [1]) that, 
if f is a rational function of degree two or more, then the SFE does not have a 
solution if u is a root of unity. On the other hand, Siegel [11] has shown 
that, if u = e2lJta , where a is irrational, then the SFE has a solution if there 
exist a, b > 0 such that 

P a - - > — , Vp, q e Z. qb> 
This condition is satisfied for a set of u of full measure on the unit circle. 
In this paper we will make use of the well-known fact that f, given by (2) , is 
topologically conjugate to \ix. Hence, the dynamics of / and \ix are equivalent 
and the zeros of the generalized Fibonacci polynomials can be related to the 
roots of unity. 

2_. Generalized Fibonacci Polynomials 

Although Fibonacci polynomials have been studied for well over a century, 
there was initially no common agreement on how to define this class of polyno-
mials. For example, Catalan [3] defined them by 

F0(z) = 0, Fl(z) = 1, Fn+l(z) = zFn(z) + Fn-l(z), n > 1, 

while Jacobsthal [9] defined them by 

F0(z) = 0, Fl{z) = 1, Fn+l(z) = Fn(z) + zFn_l(z)i n > 1, 

and Byrd [2] by 

FQ(z) = 0, Fl(z) = 1, Fn+l(z) = 2zFn(z) + Fn_l(z), w > 1. 

However, the general consensus (see [6], for example) is that the class of 
Fibonacci polynomials is defined by 

(7) FQ(z) = 0, Fl(z) = 1, Fn+l(z) = zFn(z) + Fn_l(z), n > 1. 

It is easy to obtain a simple closed expression for these polynomials in 
terms of trigonometric functions (see [6], for example) and hence show that the 
zeros of Fn are given by 

2^ cos — , Ac=ls . .., n - 1. 
ft 

'.w-ir-j-v-"-'-"-^] 
In addition, it is easy to show 

V 
(8) _ 

j = o " 

Horadam [8] has considered generalized sequences of Fibonacci numbers given 
by 

% = a, w1 = b, wn + l = pwn - qwn_l, n > 1, 

where wn is a function of a, b, p , and q, and obtained closed expressions for 
many special classes of wn. The case in which a = 0, b = 1 so that 

(9) F0(zl9 z2) = 0, Fl(zl, z2) = 1, 

Fn+l(zl, z2) = z1Fn(z1, z2) + z2Fn_1(z1, z2)s n > 1 
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is now known as the family of generalized Fibonacci polynomials. The proper-
ties of these polynomials have been studied extensively by Hoggatt & Long [7], 
which builds on the earlier work of Webb & Parberry [12] who consider the divi-
sibility properties of Fibonacci polynomials. 

In particular, Hoggatt & Long [7] show that 

do M«I. *2> = io(n -) - j)zr2'-l4> v = p - ^ ] , 
and that Fn(zi, z2) = 0 iff 

. r ki\ n 
2i = 2^^/z<? c o s — , k = 15 . . . , n - 1 . 

n 
Furthermore, they show that, for m > 2, Fm \Fn iff m\n and that Fn is irreduci-
ble over the rationals iff A is prime. A consequence of this is, if n\ , ..., 
rii are the factors of n, then all the zeros of Fni, ..., FUl are zeros of Fn. 

This work has been generalized by Kimberling [10] who shows that each gen-
eralized Fibonacci polynomial Fn has one and only one irreducible factor that 
is not a factor of Fk for any k < n, which is called the nth Fibonacci cyclo-
tomic polynomial Gn(zi, z2)• Kimberling shows 

Fn(zls z2) = 11 Gn(zl9 z2). 
d \ n • 

The polynomials defined in (3) and (5), which will prove significant when 
analyzing the behavior of the iteration of rational functions of degree one, 
can easily be related to generalized Fibonacci polynomials and Fibonacci poly-
nomials. In fact, comparing (3) and (9), we see 

(11) 
while 
(12) 

or 

(13) 

P„ ( s i . z2) = Fn(l -

\ x 2 / xn_1 

„(i\ 
Pn(z' / J \n-l' 

~ S i 

This can be seen by substituting (12) into (5) and noting that (7) results. 
Consequently, it is trivial to show 

.7=0 X <> ' 

V 
—» , _ . n i n, — ± — ./ \ n 

V 
J = 0 

while P n - L 
(14) Pn(^l5 zz) = L (n " \ " J')(l - ̂ 1)^^-1(^i - * 2 ) ' \ p 

In addition, the zeros of Pn(zl9 z2) and Pn can be found from (11) and (13). 
Thus, the zeros of Pn are simple and given by 

I ? ki\ 
- secz — , k =* I, ..., n - 1, 
4 n 

so that all zeros are real distinct and lie in the interval (1/4, ° ° ). Simi-
larly, if zl * 1, then P (sl5 z2) = 0 iff 

(15) z9 = zx + (1 - si)2- sec2 — , k = 1, ..., n - 1, 
4 n 

where all the roots in this set are simple, so that if n = 2p + 1 there are p 
distinct zeros while if n = 2p there are p - 1. On the other hand if s, = 1, 
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then (14) implies 

(16) Pina, z2) = 0, n = ls 25 ...5 
while it can easily be seen from (14) that 

(1 + zx)2\ /l - z^71-1 

(17) Pn[zi, 

We also note that a formula for Pn can be derived by considering the charac-
teristic polynomial associated with (3) given by 

x2- - (1 - Z\)x + z2 - z\ = 0. 

The roots of this equation are 
1 - Si ± /(l + 2 i ) 2 - Uz2 

Q = i i 
1 2 

and so it is easily seen that 

(18) " ' * ' 
Pn(sl5 s2) = ^ — j 

In the next section we will show that some of the above results can be 
proved by noting the behavior of the iterations of rational functions of degree 
one. For ease of notation we will henceforth refer to the polynomials Pn(zi, 
z2) as the Shifted Generalized Fibonacci Polynomials (SGFP). 

3. Functional Iteration 

Consider the iteration scheme given by (1) where / is as in (2). We will 
denote the iterations of {x, X\, x2, ...,#„, . . .} by 

if(k\x); k = o, l, ...}. 
The following result gives the value of xn after n iterations. 

Lemma 1: Let z^ = A:Als z2 = kX2, and Pn(sl5 z2) represent the nth shifted gen-
eralized Fibonacci polynomial then 

{n) kPn(zl9 z2) - x(Pn(z1, z2) - Pn + i(zl9 z2)) 
T (X) — ' • 

Pn + i(zi9 z2) + s 1 P ? 2 ( s l 3 z2) - x\2Pn(zi, z2)' 

Proof: The proof i s by i n d u c t i o n . From ( 2 ) , 
1 - XiX 

1 - \ik 
f^Kx) = k 

1 1 - X2x k(l - zi) - x(z2 - z\) 
1 - XiX 1 - z2 - X2x(l - z\) 

1 - x?k 
z 1 - X2x 

kP2(zi, z2) - x{P2(zl9 z2) - P3(zi> z2)) 
P 3 ( s l 3 z2) + ziP2(zi> z2) - X2xP2(zis z2)s 

w h e r e zi = /cA]_, z2 = kX2* Now, 

1 - XiX 
kPn ~ k - -—: -\Pn - Pn+\) 

f(n + D(x} , f("\fix)) = 1 - ^ L 
1 - XiX 

Pn + l + ZiPn - Z2~ - Pn 
1 - X2x 

=
 kPn + l " X(*2-Pn - *l(Pn - -Pn + l ) ) = kPn+1 - x(Pn + l - Pn + 2) 

Pn + l + *\Pn ~ Z2Pn " A 2 ^ P n + i P„ + 2 + ^ P ^ - A 2 ^ P n + 1 ' 
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by ( 3 ) , and t h e lemma i s p r o v e d . 
From Lemma 1 , i t c a n b e s e e n t h a t 

/«N XoX2 ~ (1 + Zi )x + k 
(19 ) f<»\x) = x + p n ( s i s ^ } ^ L ^ ^ , 

P n + 1 U l 5 s 2 ) + ^ P J s p s 2 ) - X 2 a: -P n (2 l 5 <?2) 
so that x is a fixed point of f ^ iff 

(20) Pn(sl> s2) = °> o r A 2^ 2 " (1 + 3].)a; + k = 0. 

Thus5 it can be seen that., if 

then f is periodic of order n no matter what the starting value [or, equiva-
lently, f^n\x) is the identity function]. From this, we deduce that the result 
in [7] about the common zeros of generalized Fibonacci polynomials is a direct 
consequence of (20). For, if N is a multiple of n, and z\ and s2 are chosen so 
that Pn(s]_, s2) = 0, then f will be periodic of order n for any starting value. 
But / will also be periodic of order Ns and so from (19), PN(Z\> 22) = 0. Thus, 
Pn \PN iff n\N. 

The above property is due to the well-known fact that the map given by (2) 
is topologically conjugate to the map \xz by a Mobius transformation (see, for 
example, [4]). Consequently, if the function g(z) = \±z is iterated, then g 
will be periodic of order n for any initial guess if \in - 1 = 0; hence, the 
zeros of the shifted generalized Fibonacci polynomials are related to the, nth 

roots of unity. 
Some simple analysis gives the relationship between u and (2) as 

1 - 2zz + z\ ± (1 - zl)/(l + zx)2 ~ 4s2 _ 0± 

2{z2 - zY) 6T 

where S]_ = kX\9 s2 = fcA2. This can also be written as 
/I - 2z0 + z2 \ 

(22) v1 ~ U ~ H + 1 = 0. 
\ z2 - zY / 

Hence, from (18) and (21), we have 
e£ - e? e± - eT „ , . V(i + zQ2 - 4z2 

(23) U" - 1 = * = Tn-^Pntel* 22> = ^ Pn^l> *2> ' 

Now the dynamics of g and / are equivalent (see, for example, [4]). If 
||i| < 1, then the iterations of g converge to 0 for any starting value while, 
if |y| > 1, the iterations converge to infinity for any starting value apart 
from 0. On the other hand, if |u| = 1, there are two possibilities: if u is an 
nth root of unity, the iterations of g are periodic of order n for any starting 
value, so that g^n) is the identity function while, if yn * 1, then the itera-
tions of g{x) wander chaotically on the unit disk of radius x taking on all 
possible values. Thus, the relationship between the zeros of unity and the 
zeros of Pn are obtained from (22) and (23) by noting the following: 

(i) y = 1 corresponds to (1 + zx)2 = 4s2, so that from (17) and Lemma 1, 

(21) 

* - 4 -l(l+ £)<!-*!>) Ik 

(ii) y = -1, which is equivalent to \in = 1 for n even, corresponds [by (16) 
and (22)] to ^ = 1. In this case f is periodic of order 2 for any 
starting value. 

(iii) yn = 1, with u £ (1, -1}, implies [from (22) and (23)] that the zeros of 
Pyj are 
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(24) z2 = 1— (1 - zO1 + 3i-
(y + l)z 

For these values of z\9 f ^ is the identity function. 
Thus, in conclusion, we have seen that by iterating the general rational 

function of degree one and noting that the dynamics of this function are the 
same as that of the function \iz, we have obtained relationships between the 
zeros of generalized Fibonacci polynomials and the nth roots of unity. These 
results are not new but the proofs are and they rely upon obtaining a general 
formula for the nth iteration of a rational function of degree one in terms of 
a set of polynomials called Shifted Generalized Fibonacci Polynomials. Thus, 
we have related the study of Fibonacci theory to the iteration of the general 
rational function of degree one. 

With respect to the mathematics of the iteration of nonlinear functions, 
since it is known that the Schroder Functional Equation has no solution for 
rational functions of degree 2 or more when y is an nth root of unity, we have, 
in this paper, essentially characterized the dynamics of all rational functions 
that satisfy the SFE when y is a root of unity. Finally, in this paper we have 
obtained results about the nature of the zeros of a new class of polynomials by 
iterating an appropriate class of functions and this technique may well be 
generalizable. 
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