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BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln, satisfy 

Fn + 2 = Fn+l + Fn> FQ = °> Fl = ^ 
Ln + 2 = Fn + l + Fn> F0 = 2» Fl = 1' 

Also, a = (1 + /5)/2, 3 = (1 - /5)/2, Fn = (an - 3n)//5, and Ln = an + 6n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-664 Proposed by Mohammad K. Azarian, U. of Evansville, Evansville, IN 

Let a 0 = / 2 and an + 1 = /2 + an for n i n {0, 1, . . . } . Show t h a t 

-1 

B-665 Proposed by Christopher C. Street, Morris Plains, NJ 

lim an = X] E 

Show that AB = 9, where 

A = (19 + 3 / 3 3 ) 1 / 3 + (19 - 3 / 3 3 ) 1 / 3 + 1 , 

B = (17 + 3 / 3 3 ) 1 / 3 + (17 - 3 / 3 3 ) 1 / 3 - 1. 

B-666 Taken from solutions to B-643 by Russell Jay Hendel, Dowling College, 
Oakdale, NY, and by Lawrence Somer, Washington, D.C. 

For primes p, prove that 

(p) = [nip] (mod p), 

where [x] is the greatest integer in x. 

B-687 Proposed by Herta T. Freitag, Roanoke, VA 

Let p be a prime, p 2 2, p * 5, and w be the least positive integer such 
that 10m = 1 (mod p). Prove that each w-digit (integral) multiple of p remains 
a multiple of p when its digits are permuted cyclically. 
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B-668 Proposed by A. P. Hillman in memory of Gloria C. Padilla 

Let h be the posi t ive integer whose base 9 numeral 
100101102...887888 

i s obtained by placing a l l the 3~digit base 9 numerals end-to-end as indicated. 
(a) What i s the remainder when h i s divided by the base 9 integer 14? 
(b) What i s the remainder when h i s divided by the base 9 integer 81? 

B-669 Proposed by Gregory Wulczyn, Lewisburg, PA 

Do the equations 

25Fa + b + cFa + b-cFb + c-aFc + a-b = 4 - L^a - B 2h - L2Q + ^2a^2b^2c ? 

p o p 
^a + b + c^a+b-c^b + o-a^c+a-b = -4 + L2a + L2b + L^c

 + ^2a^2b^2c ' 
hold for all even integers as bs cl 

SOLUTIONS 

Circulant Determinant for Fn + i 

B-640 Proposed by Russell Eider, Northwest Missouri State U., Marysville, MO 

Find the determinant of the n*n matrix (x^) with x^ = 1 for j = i and for 
j = i - 1, x^j = -1 for j = i + 1, and x^ • = 05 otherwise. 

Solution by Paul S. Bruckman, Edmonds, WA 

Let An denote the given matrix and Dn its determinant. Clearly, D\ = 1, and 
D2

 = 2. We may expand Z?n along its first row; doing so, we see that Dn - D~n-i 
+ Bn-is where Bn is the determinant of the n x n matrix obtained by replacing 
x21 = 1 by 0 in y4n, all other entries unchanged. Expanding Bn-\ along its 
first column, we see that 5n_1 = Dn_2« Therefore, we obtain the recurrence 
relation: 

(1) Dn = Dn.x + Dn_2, n = 3, 4, ... . 

Together with the initial values of Dn, we see that 

(2) Dn = Fn + l (n = 1, 2, . . . ) . 

Also solved by R. Andre-Jeannin, C. Ashbacher, Piero Filipponi, Russell Jay 
Hendel, Hans Kappus, L. Kuipers, Y. H. Harris Kwong, Carl Libis, Alex 
Necochea, Bob Prielipp, H.-J. Seiffert, Sahib Singh, and the proposer. 

Fmn and Lmn as Polynomials in Fm and Lm 

B-641 Proposed by Dario Castellanos, U. de Carabobo, Valencia, Venezuela 

Prove that 
1 

F„„ = - F - mn 
ILm + /5Fa\» _ ILm - /5F\n 

L + J5F \n IL - /EF \n 

L m n - I " - ) + 
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Solution by Y. H. Harris Kwong, SUNY College at Fredonia, NY 

Let a = (1 + / 5 ) / 2 and 3 = (1 - / 5 ) / 2 . I t i s known t h a t 

Lm = am + Bm and /5Fm = am - 3 m . 
Solving fo r am and $m, we have 

... Lm.+ /5Fm „ Lm - /5Fm 
and 

w - ——\nmn - amn^ - —— Fmn ~ ^ 3 ] - ^ 

amn + 

_ _1_ 
Fnm ~ ^ 

2 
There fo re , __ _ 

[/Lm + /5FmS» __ /Lm - /5Fm\» 

E d i t o r ? s n o t e : The p ropose r asked fo r a proof t h a t 
[/Lm + /5Fm\" _ /L„ - / ^ y * 

and 

and t he Elementary Problems e d i t o r i n a d v e r t e n t l y i n t e r c h a n g e d some (but no t 
a l l ) ???fs and n f s . 

Also solved by R. Andre-Jeannin, Paul S. Bruckman, James E. Desmond, Rus-
sell Euler, Piero Filipponi, Herta T. Freitag, Guo-Gang Gao, Russell Jay 
Hendel, Hans Kappus, L. Kuipers, Alex Necochea, Bob Prielipp, H.-J. 
Seiffert, Sahib Singh, Lawrence Somer, and the proposer. 

Lk(2n+i) a s a Polynomial in L £ n + i 

B-642 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

I t i s known t h a t 

L2(2n + l) = L2n + l + 2 j 

and i t can r e a d i l y be proven t h a t 
L3{2n+l) = L2n+1 + 3L2n+l' 

G e n e r a l i z e t h e s e i d e n t i t i e s by e x p r e s s i n g ^^(2n+l) » ^ o r i n t e g e r s fc > 2 , as a 
polynomial i n ^2n+l-

Solution by H.-J. Seiffert, Berlin, Germany 

Define the P e l l - L u c a s polynomials Qk(x) as i n [ 1 ] , p . 7, ( 1 . 2 ) 9 by 

Q0(x) = 2, Q1(x) = 2x, Qk + 2(x) = 2xQk + 1(x) + Qk(x). 

F i r s t , we show t h a t 

(1) SfcC^w + l / 2 ) = Lk(2n + 1) 
i s t r u e fo r k = 0, 1. Assuming (1) ho lds fo r a l l j = 0, . . . , k, we ge t 

Qk+l(L2n+l/2) " L2n+l$k(L2n+l/2) + Qk-1(L2n+1/2) 

= L2n + lLH2n + l) + ^(fc - l)(2w + l ) = ^ U + l ) ( 2 n + l ) » 
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where the l a s t equal i ty can eas i ly be proven by using the known Binet form of 
the Lucas numbers. Thus (1) i s establ ished by induction on k. In [1 ] , p . 9, 
(2.16), i t i s shown tha t , for k > 0, 

(2) Qk(x) = E T~r ~. J ) ( 2 x ) ^ ^ s 

where [ ] denotes the greatest integer function. From (1) and (2), we obtain 

L - [y] -k—(k ~ *')L*-* 

1. A. F. Horadam & Bro. J . M. Mahon. "Pel l and Pell-Lucas Polynomials." Fibo-
nacci Quarterly 23.1 (1985). 

Also solved by R. Andre-Jeannin, Paul S. Bruckman, Herta T. Freitag, Rus-
sell Jay Hendel, L. Kuipers, Y. H. Harris Kwong, Sahih Singh, Paul Smith, 
and the proposer. 

Binomial Coefficient Congruence 

B-643 Proposed hy T. V. Padnakumar, Trivandrum, South India 

For positive integers a, n, and p, with p prime, prove that 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, NY 

A well known re su l t of E. Lucas [2] s t a t e s that if the p-ary expansions of 
n and k are Y..>^nipi and S ^ o ^ p S respect ive ly , then 

UK"© (-„). 
(For a short and simple proof, consult [1].) Suppose the p-ary expansions of a 
and m = n + ap are S^>oa-Pi anci ^i><dm-V'L > respectively. We have to show that 

(p)-(p)s(?)-(ni1)-'»i-»^a^o (-dP). 

But it is clear from m = n + ap that mi = ni + ag (mod p), so the proof is com-
pleted. 

1. N. J. Fine. "Binomial Coefficients Modulo a Prime." Amer. Math. Monthly 54 
(1947):589-92. 

2. E. Lucas. TMorie des nombres. Vol. I. Paris: Librairie Scientifique et 
Technique Albert Blanchard, 1961. (Original printing, 1891.) 

Also solved by R. Andre-J eannin, Paul S. Bruckman, Piero Filipponi, Russell 
Jay Hendel, Joseph J. Kostal & Subramanyam Durbha, L. Kuipers, Bob Prie-
lipp, Lawrence Somer, and the proposer. 

Markov Chain 

B-644 Proposed by H. W. Corley, U. of Texas at Arlington, TX 

Consider three children playing catch as follows. They stand at the verti-
ces of an equilateral triangle, each facing its center. When any child has the 
ball, it is thrown to the child on her or his left with probability 1/3 and to 
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the c h i l d on the r i g h t wi th p r o b a b i l i t y 2 / 3 . Show t h a t the p r o b a b i l i t y t h a t 
the i n i t i a l ho lde r has the b a l l a f t e r n t o s s e s i s 

2//3Y2 /5mr\ , 1 - n i o 
-(^— J cos^-j—J + - for n = 0, 1, 2, ... . 

Solution by Hans Kappus, Rodersdorf, Switzerland 

More generally, let us assign probabilities p, <y (p + q = 1) for throws to 
the left and right, respectively. Denote by p^(n) the probability that child i 
has the ball after n tosses (i = 1, 2, 3) and suppose that child 1 is the 
initial holder, i.e., impose the initial conditions 

(1) Pl(0) - 1, px(l) = 0. 

Applying the rule of conditional probability and noting that 

p-^tn) + p2(n) + p3(n) = 1, 

we have the r e c u r s i o n 

(p1(n + 1) = q • p 2 ( n ) + p • p 3 ( n ) = -p * p 1 (n) + (<? - p) • pz(n) + p 

| p 2 ( n + 1) = p • p1(n) + ^ • p 3 ( n ) = (p - q) - p1(n) - q • p2(w) + ^ 
Eliminating p (?z) we arrive at the inhomogeneous second-order difference equa-
tion 

(3) Pl(n + 2) + Pl(n + 1) + (1 - 3p^) • p^n) = 1 - pq, 

which may be solved by standard methods. The solution turns out to be 

(4) Pl(n) - | . ( i -

where <J> i s given by 

(5) cos <J) = - - • (1 

3pq)n/2 cos n§ -

- 3p<7)~1/2 , s i n 
1/3 - 12p<y\l/2 

2\l - 3p<?/ 

For the special case p = 1/3, <7 = 2/3; this is the result of the proposer. 

Remark: The process described in the problem is a Markov chain with transition 
matrix 

0 
<7 
V 

V 
0 
<7 

<7 
V 
0 

AZso solved by Paul S. Bruckman, Piero Filipponi, and the proposer. 
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