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There is no .really new theoretical result below. However, our paper will 
show how to use an old and clever idea in order to discover recurrences. Such 
an expository paper surveying these techniques may be of interest. A few spe-
cific books or papers are needed, but for general background as to notations 
and definitions for Fibonacci, Bernoulli, Bell, and Stirling numbers, etc., the 
reader may consult papers in the Fibonacci Quarterly or Riordan's books [6], 
[7]. Niven [5] has given a good, readable account of formal power series. It 
is shown there when and why convergence questions may be ignored. Finally, 
four papers of the author, [1], [2], [3], and [4], may be consulted for other 
background information. Reference [1] is especially useful for an abundance of 
intricate generating functions for powers of Fibonacci numbers. 

We begin with a small theorem about formal power series, 

Theorem 1. Exponential Series Transformation: Define 

(1) S(n) = £ (£W," 
k =o^7 

(2) s£{x) - ± ^An, 
n = 0 n ' 

and 

(3) &(x) = £ ^S{n). 
Then 

(4) &(x) = exjtf(x). 

The proof is simple and runs as follows. We have 

k 

n= 0n- k= 0XK/ n=0 fe=0(-w k)lkl 

m f . £fe f , ^ =-f, £fe f^ £ ^ 
'k^0kln^k(n - k)l fakl&o n\ 

& = o Kl n=0 nl 

What we wish to show here is that by clever manipulation, especially if ex 

combines in a novel way with sd, we may often use (4) to find a different way of 
writing expansion (3) that does not use S(n) again directly. Then, by equating 
coefficients, we get a new recurrence. This is a common piece of psychological 
trickery used in research. We say the same thing but in a seemingly different 
manner. 

Relation (1) may easily be inverted to give 

(5) ^Ant= t (-Dn~k(l)s(k), 
k= 0 

which is a well-known result [7] which follows readily from the Kronecker delta 
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(6) ±(-ir-Hn
v)()) = ( ° •) = in • * J- = M' 

k = j \kl\o I \n - j / (0 if j ^ n. 

As a consequence of this inversion., we may also state Theorem 1 in a dual form. 

Theorem 1': Define 

u f ) An = i : (-i)n-k(j)£(k)5 

(2') g?(*) = £ f?S(n), 

(3 0 4^) = t $An. 
n= 0 n i 

Then 
(4f) ĵ (a?) = e~x'&(x). 

We will now concentrate on applications of Theorem 1. 

Application 1. Let An = (-l)nFn, where Fn is the nth Fibonacci number defined 
by 

Fn + l = Fn + Fn-1> FQ = 09 Fx = I. 
We must recall that the exponential generating function for the Fibonacci 

numbers is 
» xn Qax _ ebx 

(7) £ ~sFn = 7—' 
n=on! a - b 

where a + b = 1, ab = -1. These are the roots of the characteristic equation 
associated with the recurrence relation. In fact, a, b = (1 ± /5)/2. 

It then follows in this special Fibonacci case that 

To show this, we have 

&(x) = ex sd(x) 
?-Z?x e(\~a)x _ e(l~b)x ebx 

a - b a - b a - b 
pax _ pbx * Tn 

Recalling (1) and (3), we have, upon equating coefficients, the new recurrence 
relation S(n) = -Fn, i.e., 

(8) E ( - D k + 1 ( 2 K = F«-
The reader may find it interesting to try to provide a simple inductive 

•proof of relation (8) using the binomial and Fibonacci recurrences 

[n t*) = G) + (fe - i ) ' Fn+1 = Fn + F " - i -
Such a proof requires a certain algebraic skill. 

Application 2. Let An = Bn, the nth Bernoulli number, whose exponential gener-
ating function is known to be 

(9) s/(x) =Z^rBn 
n=onl n ex - 1 
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I t can then easily be seen that 

<Six) = ex f 1 = _~X
 1 = .*«-*), e* - 1 e - 1 

and it thus follows from Theorem 1 that Sin) = i~l)nBn, i.e., 
n 

(10) £ \l)Bk = (-1)W£«> valid for all n > 0. 

Remark: Because Bn = 0 for all odd n > 3, this familiar recurrence may be mod-
ified to read as 

(U) E ( £ W = 5n> valid for all n > 2. 
Zc*(T 

Symbolically, in the umbral notation of Blissard, this is often written in the 
compact form (B + l ) n = Bn (expand and demote powers to subscripts). 

Application 3. Let A n = B{n), the nth Bell, or exponential number. These num-
bers have the well-known exponential generating function 

(12) eeX~l = exp(e* - 1) = V — Bin), 
n=o nI 

so this is our sd{x). 
By out theorem, using relation (4), we find that 

<Six) = exexp(ex - 1) = Dxex?(ex - 1) = Dxj#ix), 

- E ^ W - ± f?*(n + 1), 
n=0 n l

 n= 0nl 

whence by our theorem we find the recurrence relation Sin) = B(n + 1), i.e., 
n 

(13) £ U)B(k) = £(w + 1), valid for all n > 0. 
fc = ov/a 

By the inversion (5), this yields 

(14) £(-l)n-k(?)s(fc + 1) = B(n), 

which, in terms of the finite difference quotient operator, says that 

(15) KB(k + 1) = B(n), 
k, 1 

which is the analogue of the differential calculus formula 

(16) (Dx)nex = ex. 

This parallel of (15) with (16) is a further reason why the Bell numbers are 
reasonably called "exponential" numbers. 

The reader may look for other examples where a generating function has some 
nice relation to the exponential function, which is part of the secret of 
success. Such research requires an artistic touch of intuition. 

It is possible to set down a parallel theorem for binomial generating func-
tions. We offer the following. 

Theorem 2. Binomial Series Transformation: Define as before in (1), 

(17) S(n) - t(l)Ak, 
k=o' 
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(18) @(x) = I>n^n> 
n= 0 

and 

(19) Mx) = £ xnS(n), 
n= 0 

Then 

(20) Mx) = £ An n + l n=0 (1 - x) 

and the best we can do to parallel (4) is to write this as 

(21) Mx) = ^(s), where z 
1 - x 1 - x 

The proof is easy and runs as follows. We have 

jew = ±x»± (n
k)Ak = t Ak t &y 

-±A*t (n+
k v+fc= t^kt{n+

k
ky 

7< = 0 n = 0 x K 7 k= 0 ft = 0X K 7 

k= o * 1 - a; & = o * 1 - x 
This result is useful in a different way than Theorem 1. We give as an 

example, 

Application 4. Let An = (-l)nFn as in Application 1. Then 

-x 
mx) = x; i-x)nFn = -

n = 0 1 + X - Xz 

and 
1 1 -2 -x 

Mx) = #(z) = T = " r 
1 - x l - x l + ^ - 2 z l - x - x z 

= -#(-*) = -t,Fnxn, 
n= 0 

so that by Theorem 2 we have the recurrence S{n) = -Fn, i.e., 

(22) E(-Dfe + 1(feh =F«' 
k=0 X K / 

which is precisely result (8) again, but it required a bit more work to obtain 
it by use of Theorem 2. This gives some feeling for the elegance of the expo-
nential generating function when it can be used. 
Application 5. In Theorem 2, let An = Fn using the Fibonacci numbers again. 
Then 

Mx) = 
1 - X - X Z 

and the reader may verify that a bit of algebra using An = 1 and m = 2 in equa-
tion (2.11) in [1] yields 
(23) Mix) = = £ F2nxn, 

I - 3X + XZ n=0 
so that we have the recurrence S(n) = F2n, i.e., 

(24) t0(l)Fk = F2n. 
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Application 6. Let us appl}̂  Theorem 1 to a generating function studied by Euler 
(cf. [2], p. 48, and [4], Sect. 6). Euler used the generating function 

(25) st(x) = st(x, p) = (ex - l)p 

to evaluate the series 

(26) S(n, p) = — Z (-Dp-J'(?)jn, 

which we.have designated here by the "Stirling Number of Second Kind" notation 
of Riordan. It is known (see [4], Sect. 6) that 

(27) j*(x, P) = f: —s jr (-i)k(l)k\ 
n= o nl k= o XK/ 

In Theorem 1 then, with this for sd{x), and taking S{n) to be given by 

(28) S(n) = £(".)J:(-l)P-k(l)k\ 

(29) An(p) = £ (-Dp-fcg)£n, 
fc = o 

we then find by Theorem 1 that 

&(x) = exs3?(x, p) = ex(ex - l)p = (ex - 1 + l)(e* - l)p 

= (e* - l)(ex - 1)P + (e* - l)p = (e* - l)p + 1 + (e* - l)p 

or, more simply, 

(30) &(x) = jrf(x, p + 1) + j/(x, p). 
Therefore, 

(3D Z ^S(n) = £ ^M?2(p + 1) + An(p)], 

so that we find the recurrence 

(32) S(n) = An(p + 1) + An(p), 
which, in view of (28) and (29), says 

n 
(33) £ (^j(p) = ̂ «(P + 1) + 4„(p). 

j = 0 W ' 

Comparing (26) and (29) , we have the correspondence 
(34) : An(p) = plS(n, p) 
for translating our results into Riordan!s "Stirling Number" notation. Thus, 
we find 

n 
(35) £ u)^> P) = (P + l)^(w» P + 1) + S(n, p) k = o 

n-l 

£ (£)£(*> ?> = (? + D^(« , p + i ) . 
, _ n \ ft / n= 0 

However, £(&, p) = 0 whenever 0 < j < p, so we finally get the recurrence for-
mula for the Stirling Numbers of the Second Kind, i.e., 

n-l 
(36) £ (l)s(k, p) = (p + l)S(n, p + 1). 

fe = p v 
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Conclusion. The work we have presented here was based on the use of the bino-
mial coefficient (£?) in the defining relationships (1) and (17). It is easy to 
replace this by other functions g(n9 k) and obtain parallel theorems. We just 
have to impose interesting properties on g(n, k) in order to get interesting 
theorems. In later papers we will exhibit such results for ^-analogs, Fibo-
nomial coefficients, and the bracket function. 
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