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So lu t i ons of the equa t ion 

(where cf> i s E u l e r ' s t o t i e n t func t ion ) were cons ide red by Makowski [ 3 ] . He 
showed t h a t a t l e a s t one s o l u t i o n e x i s t s i f k i s even, or k i s not d i v i s i b l e by 
3 , or 

* - ̂ X 1 • • • C. 
where F^ = 22'+ 1 is the ith Fermat number, a^ > 1 for 0 < i < s, Fs + i is prime, 
and (m, 2FQFI . . . Fs FS + I) = 1. He did not determine whether solutions exist 
for other odd numbers that are divisible by 3. Makowski also raised the 
question whether there are positive integers for which no solution exists. In 
particular, he noted that it is not known whether there is a solution for 
k = 3. 

This paper provides very severe necessity conditions for x when k = 3, and 
significantly enlarges the set of integers for which at least one solution is 
known to exist. 

Throughout this paper, p, q, and r will denote distinct odd prime numbers. 

Lemma 1: If <f>(n) = 2j for j > 1 and odd, then n = pa or n - 2pa. 

The proof is given in [1]. 

Lemma 2: If <f>(n) = 4j for some odd j > 1, then n is one of the following: pa, 
2pa, 4pa, paq&, or 2paq$. 
Proof: Clearly n cannot be divisible by 8 and cannot have more than two dis-
tinct odd prime factors. 

Theorem I: If <j>(x) + (f)(3) = $(x + 3), then 

(i) x = 2pa or x = 2pa - 3, and 
(ii) p > 3. 

Proof: (i) Let <|> (a?) = 2yj and <J> (a; + 3) = 2?^ f o r J> k odd. Then the hypothe-
sis gives us 2vj + 2 = 2mk. Hence, v = 1 iff m * 1. 

Case 1. Let v = 1. Then x = pa or a: = 2pa by Lemma 1. a? = pa implies 

pa _ pa-1 + 2 = <|>(p« + 3), 

and s i n c e pa + 3 i s even, 
p a + 3 

<Kpa + 3) < Z—2 . 

Thus, pa + 1 < 2pa_1, which Is impossible. 

Case 2. Let m = 1. Then x = pa - 3 or x = 2pa - 3 (Lemma 1). Since pa - 3 
is even, 

va - 3 
Kpa - 3) < ̂  . 

However, 
Upa) * ~pa; 
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so i f x = p a - 3 , we have 

P
 2" + 2 > (f)(pa - 3 ) + (f)(3) > | p a , 

which gives the contradiction 3 > pa. 

(ii) Suppose p = 3. 

Case 1. Let a? = 2 • 3 a for a > 1. Then 

<K2 • 3 a ) + <|)(3) = (f)(2 • 3 a + 3 ) , 
so t h a t 

3a~l + 1 = <f)(2 • 3 a _ 1 + 1 ) . 
Not ice t h a t t h i s i m p l i e s t h a t 2* 3 a _ 1 + l and <f>(2» 3 a ~ * + 1) a r e r e l a t i v e l y pr ime; 
hence , 2° 3 a _ 1 + l i s s q u a r e - f r e e . And s i n c e 8 | (30t"-L + 1) , Lemma 2 g ives us 

2 » 301-I + 1 = q or 2 • 3 a _ 1 + 1 = qr. 

The supposition 2* 3a_1 + 1 = q leads to the contradiction 

cf)(2* 3a_1 + 1) = 2 - 3a~~1 = 3a_1 + 1. 

Hence, 2 * 3a~l + I = qr. 
Assume q > r. Since 

2$(qr) = 2(3a_1 + 1) = qr + 1 = 2(<?r - q - r + 1) , 

we get qr = 2q + 2r - 1. But r > 5, so ^p > 4^. Therefore, 2r - 1 > 2q, which 
contradicts q > r. 

Case 2. Let a? = 2 • 3a - 3 for a > 1. Then 

2cf)(2- 3a_1 - 1) + 2 = 2- 3a_1 and (f)(2- 3a_1 - 1) = 3a_1 - 1. 

Hence 2 • 3a_1 - 1 and cf)(2 e 3a - 1). are relatively prime, which implies that 
2- 3a_1 - 1 is square-free. Also, since 3J(3a-1 - 1) , we have 3Jcf)(2 * 3a-1 - 1). 
So, if q\(2* 3a_1 - 1), then q i 1 (mod 3). Thus, 4 = 2 (mod 3). So, 

cf)(2 • S0^1 - 1) == (̂  - 1)(?2 - 1) ... (^ - 1) = 1 (mod 3). 

But (3a_1 - 1) = 2 (mod 3). This contradiction completes the proof. 

cf)(2pa + 3) 1 
Lemma 3: If 4>(2pa) + (f)(3) = cf)(2pa + 3), then ——~n —- < -. 

2pa + 3 X 2pa + 3 
a + 2 < — -. Proof: cf)(2pa + 3) = cf)(2pa) + 4(3) = (^-f^)p 

(f)(2pa - 3) 1 
Lemma 4: If (f)(2pa - 3) + (f)(3) = 4>(2pa), then — — ^ —- < -. 

2pa — 3 z 

/p - 1\ 2pa - 3 . 
Proof: cj)(2pa - 3) = ĉ (2pa) - (f)(3) = (^—jP a " 2 < " ^ • 

Lemma 5: Let S = {q\q = 2 (mod 3)}. If n is a positive integer such that every 
prime factor of n belongs to 5 and §(n) In < 1/2, then n has more than 32 dis-
tinct prime factors. 

Proof: Calculations show that even if the 32 smallest primes in S all divide n, 
§{n)/n is still greater than 1/2. 

Theorem II: If <$>(x) + (f)(3) = <}>(#+ 3), then: 

(i) x or x + 3 has at least 33 distinct prime factors, or 
(ii) x = 2pa for a odd, p = 2 (mod 3), x > 1011, and x + 3 

has at least 9 distinct prime factors. 

1990] 163 



ON THE EQUATION <J>(a) + <J>(fc) = 4> (x + k) 

Proof: 
Case 1. Let a; = 2pa - 3, a even. Suppose q\x. Then 2pa - 3 = qv for some 

integer v, and 4pa = 2qv + 6. And since a is even, 6 is a quadratic residue 
mod q. Hence, the thirteen smallest primes that can divide x are 5, 19, 23, 
29, 43, 47, 53, 67, 71, 73, 97, 101, and 139. Let x = q^q^2 ••• ??* - Calcu-
lations show that 

I < A . i S . 2 2 e Z 8 42 46 ^2 66 "70 _72 96 _100 /138\28 

2 K 5 * 19 * 23 * 29 * 43 * 47 * 53 ' 67 " 71 ' 73 ' 97 * 101 * \139 / " 

So if i < 40, then $(x)/x > 1/2. But §(x)/x < 1/2 by Lemma 4. Hence, i > 40. 

Case 2. Let x = 2pa - 3, a odd. Suppose q\x and q = 1 (mod 3). Then we 
have (j>(a?) = 0 (mod 3) . So 

[<t>(x) + (f)(3)] = 2 (mod 3). 

But <(>(#) + <K3) = <K# + 3); hence, 

<)>(# + 3) = (j)(2pa) = p 0 ^ 1 ^ - 1) = 2 (mod 3). 

And since a is odd, this is impossible. Thus, if q\x, then q = 2 (mod 3). So 
by Lemmas 4 and 5, a: has at least 33 distinct prime factors. 

Case 3. Let x = 2pa, a even. Suppose q \ (x + 3) and q E 1 (mod 3). Then 
<f)(ar + 3) E 0 (mod 3). But 

<t>(x + 3) = (j)(2pa) + cj)(3) = pa_1(p - 1) + 2, 

So pa_1(p - 1) + 2 E 0 (mod 3), which implies 

pa"l(p - 1) E 1 (mod 3). 

And since a is even, this is impossible. Hence, if q\(x + 3), then q = 2 (mod 
3). Thus, by Lemmas 3 and 5, x + 3 has at least 33 distinct prime factors. 

Case 4. Let x = 2pa, a odd, and p = 1 (mod 3). Suppose q\x + 3 and q E 1 
(mod 3). Then $(x + 3) = 0 (mod 3). But 

<t>(x + 3) = pa~l(p - 1) + 2 E 2 (mod 3). 

Hence, every prime divisor of x + 3 belongs to S = {̂ |̂ 7 = 2 (mod 3)}. There-
fore, by Lemmas 3 and 5, x + 3 has at least 33 distinct prime factors. 

Case 5. Let x = 2pa, a odd, and p E 2 (mod 3). Suppose that 5 | (x + 3), 
q\(x + 3), and q = 1 (mod 5). Then <J>(a: + 3 ) = 0 (mod 5), pa = 1 (mod 5), and, 
since a is odd, pa _ 1 = ±1 (mod 5). Therefore, 

<t>(x + 3) = pa - p a _ 1 + 2 £ 0 (mod 5) . 

Hence, the prime factors of x + 3 all belong to S\ = {^|^ ^ 7} or 51(# •+ 3) and 
every other prime divisor of x + 3 belongs to S2 = (̂l*? > 5 and <? = 1 (mod 5)}. 
Let 

* + 3 = qpq^ ... q?'. 
Calculations show that if all q- belong to S\ or q^ = 5, and all other <7 • 
belong to S2, then <J) (x + 3) / (x + 3 ) > 1/2 whenever -i < 8. Therefore, by Lemma 
3, # + 3 has at least 9 distinct prime factors. Calculations also show that in 
either case, x > 1011. 

Makowski did not determine whether solutions exist for k = 18t i 3 or for 
k ~ kbm, where 5\m. The following theorems not only prove that solutions exist 
for many of these integers, they characterize x for each k. 

164 [May 



ON THE EQUATION <J>(#) + <Kfc) = <K^ + k) 

Theorem III: <)>(#) + $(k) = $(x + k) has a solution if fc = 3m is odd and satis-
fies any of these conditions: 

(i) pa||fe, pS = q - 2, a > 3, and qffc; 

(ii) p||fc, p = 3q - 4, and q\k\ 

(iii) pffc, p = 9q - 16, and qffc; 

(iv) p\\k, p = 3a<? - 2ars 3a - 1 = 2a_1(p + 1), q\k and r|fe. 

Proof; 
(i) Let k = paj. Then ^{2qa~^) + <Kpa«7) = Hqpa~^')* 
(ii) Let fc = 3apj. Then cf>(22°  3aj) + (j)(3apj) = cf)(qe 3a+1j). 

(iii) Let k = 3apj. Then cK24 °  3aj) + c()(3apj) = (j)(q » 3a+2j) . 

(iv) Let k = 3pj. Then <|)(3 • 2arj) + <K3pj) = cf)(3a+1<7J) • 

Theorem IV: Let 2m + 1 = 3aft where (3, ft) = 1 and a > 0; and suppose there 
exists a positive integer j such that j - cj)(j) = n and 3aJ - 2m+l = p . Then, 
If k - 3pv where (3v, 2pj) = 1, the equation <j> (x) + §(k) = c|) (a? + k) has a solu-
tion. 

Proof: <j)(2ffl + 1 • 3T;) + <f>(3p2>) = cf>(3a + 1 • jv). 

Theorems III and IV provide a solution for 51 of the 91 positive odd inte-
gers that are less than 10,000, divisible by 45, and not divisible by 25. They 
also give solutions for 50 of the 112 k such that k = I8t ± 1 and k < 1000. 
Since the solutions produced by these theorems depend on k being divisible by 
certain kinds of primes, it seems reasonable to expect that numbers with many 
prime divisors are much more likely to satisfy the hypotheses of the theorems 
than the relatively small numbers considered above. 

It is not known whether there are solutions for k = 3p where p = 5, 7, 13, 
19, 23, 59, 67, 71, 73, 97, 113, 127, 131, 151, 163, 167, 181, or 199. For all 
other p < 200, k = 3 has a solution defined in Theorems III and IV. 

Theorem IV raises the question: for which n does the equation n = x - <$>(x) 
have at least one solution? This equation was considered by Erdos [2], but a 
characterization of all such ft has not been found. 

The calculations in part (i) of Theorem II could probably be refined to 
show that x or x + 3 must have 40 or more distinct prime divisors. But such a 
refinement would not be significant, since we have already shown that any 
solution for k = 3 must be very large. Now the real challenge is to prove that 
<(>(#) + <K3) = §(x + 3) has no solution. 

Finally, we mention two other related, unanswered questions: 

1. For which positive integers n does §(x) + <Jj (ft - x) = $(ri) have at least 
one solution? 

2. For which pairs of positive integers a, b does cj)(a) + <KW = §(a + b)1 
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