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1. Introduction 

Solutions are given for the Diophantine equation 

x{ + xf + ... + xp
m = y\ + y\ + ... + yq

n, p > 0, q > 0, m + n > 2, 

for which we use the notation (p.q.m.n) . In a previous paper [1] we surveyed 
solutions of this equation for p = q with p and q < 10. We now show that 
(p.q.m.n) has nontrivial parametric solutions in which the number of terms m, n 
on both sides of the equation depend on p and q. Some of these solutions will 
be valid when p = q as a special case, but in general we assume that p > q. 
That is, we always write the equation with the higher exponent on the left-hand 
side. We assume that none of the x^ or y- is zero, and that x\ * yq- , i.e., 
that equal individual terms on both sides of the equation have been removed. 
Rarely does this condition invalidate one of the many solutions available by 
our algorithms. 

Related work includes a number of parametric solutions and also numerical 
solutions, usually involving low values of either p or q or both. Uspenski [2] 
gives a general solution in relatively prime integers of zn = x2 + y2 for 
n > 1, Various solutions of the equation z2 = x3 + y^ by Euler, Hoppe, Thue, 
and Schwering are given in Dickson [3]. The equation (3.2.n.l) was solved for 
various values of n by a number of investigators [4] , [5] . Cunningham gave a 
procedure for solving (2n.4.2.3) in [6]. Several writers solved (4.2.777.n) for 
various values of m and n [7]. Some numerical examples of biquadrates as the 
sum of several cubes or squares are given in [8] . A parametric solution of 
(5.2.3.1) was obtained by Bouniakowsky [9]. Cunningham solved (8.2.6.1) in 
[10] and both (4.2.3.3) and (8.4.3.3) in [11]. Rignaux solved (6.2.2.2) in 
[12]. Killgrove [13] discussed the equation xn + ym = zk and gave a proof for 
a theorem of Lebesgue [19] which states that if x2t + y2t = z1 has a nontrivial 
solution, then t is odd and ut + Vt = wt has a nontrivial solution. Beerensson 
[14] proved that xn 4- yn = zm has infinitely many integer solutions if m, n are 
relatively prime, but did not present explicit solutions. In [20], Kelemen 
proved two theorems on conditions for the solvability and form of solutions of 
the general equation 

a1a?P + a2x^2 + ... + anx\n = 0, 

and gave examples. 

2. Solution for all Positive Values of p, q 

Theorem 1: The Diophantine equation 

(1) xf + x|+ ••• + xp
m = y\ + y\ + ..•.+ yq

n, 
where p > 0, q > 0, m > -0, n > 0, and m + n > 2, has a nontrivial parametric 
integer solution, as follows. If d is the greatest common divisor of p and q, 
this solution exists for all m, n such that 

r r 
m = E (uk + vkkd), n = £ (vk + ukkd), 
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where r is any integer > 1 and, for k = 2, 3, . .., p, the uk and vk are arbi-
trary nonnegative integers not all zero. 

Proof: Since d is the greatest common divisor of p and q, there exist positive 
integers A , B, C, D such that 

(2) Ap - Bq = Cq - Dp = d. 

Let a\9 di> ...5 CLS and b\, b^ • ••> bt be arbitrary nonzero integers where 
s > 1 and t > 1, and let 

(3) M = £ <2£, y = £ bq
k. 

fc= l k= l 
Then u^, when expanded by multiplication, is the sum of sd terms, each of which 
is the product of d numbers of the form a?. Therefore, each term of ud is of 
the form yP, where y is an integer. Thus, we have 

(4) ud = £ yj, 
3 = 1 

where the y. are all integers. Similarly, we have 

td 

(5) v* = £ 4> 
j = i 

where the z- are all integers. Then, from (2) and (4), 

u Cq uDpuCq-Dp = uDpud = j^^PyP, 

so that 

(6) (uc)<r = £ (y,uD)P 
3=1 J 

is a nontrivial parametric solution of (1) with m = sd, n = 1, and having s 
arbitrary nonzero integer parameters a^, a2> • •.? as. Similarly, 

td 

vAp = vBqvAp-Bq = VBqvd = £ y5^?s 
J= 1 J 

or d 

(7) (VA)P = £ o ^ 5 ) * . 
j = i 

which is a nontrivial parametric solution of (1) with m = 15 ft = t , and having 
t > 1 arbitrary nonzero integer parameters Z?i, Z?2J . . . , 2?t. 

Next, we may "add11 two or more solutions of (1) by summing the terms with 
exponent p to form the left-hand side of the new solution and summing the terms 
with exponent q to form the right-hand side. Therefore, a valid nontrivial 
parametric solution of (1) may be obtained by summing uk solutions of the form 
given by (7) for t = k9 together with vk solutions of the form given by (6) 
with s = k9 where k takes on the values 2, 3, . .., r for any arbitrary integer 
v > 1. The numbers of solutions to be "added11 in this way, uk andyk , may be 
any nonnegative integers not all zero. Then m, ft, the number of terms in the 
resultant equation having exponents p, qs respectively, will be as given in the 
theorem. 
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Example 1: Let p = 4 arid q = 3 so that d = 1. Take A = B = 1, C = 3, D = 2. 
Let r = 2 so that s = 2 and t = 2. We have 

w = ax + a2, y = &1 + 2?2, ^x = #]_> y2 = a2, ^ = &]_» s2 = Z?2. 

The solution (6) becomes 

(6.1) [(a^ + a!j)3]3 = [ax(a^ + a^)2]4 + [a2(a^ + a^)2]4 

and the s o l u t i o n (7) becomes 

(7 .1 ) (b\ + b\)h = [^(Z?3 + £ 3 ) ] 3 + [2>2(£3 + 2> 3 ) ] 3 . 

Two numerical examples of (6.1) for (a1? a2) = (1» 1) and (2, 1) are 
83 = 4^ + 4 4. 491 33 = 578^ + 289^. 

Two numerical examples of (7.1) for (b^, Z?2) = (2, 1) and (3, 2) are 

94 = 183 + 93; 354 = 1053 + 703. 

We may obtain further solutions by combining (through "addition") any number of 
the individual solutions. For example, from those given, we get 

9̂  + 44 + 44 = 183 + 93 + 83; 5784 + 2894 + 35^ = 49133 + "l053 + 703, 

and so on. 

Example 2: Let p = 6 and q = 4 so that d = 2. Take A = B = 1. Set r = 2 so 
that £ = 2. Then we have z;2 = (b\ + b\)2, so that 

<JI Ay -I j O Q 1 9 ' L. 9 * 

Solution (7) becomes) 

(7.2) (2>J + 2 ^ ) 6 = [£2(2^ + bl)]h + 2[2>12>2«>J + b^)]1" + [£>2(2^ + Z^)]4. 

Two numerical examples of (7.2) for (bi> £2) = (1» 1) and (2, 1) are 

26 = 24' + 2Lf + 24 + 24; 176 = 684 + 344 + 34^ + 174. 

Note that the terms in each equation of the type (6) and (7) are not rela-
tively prime. However, since the exponents p and q are different, it is not 
usually possible to remove a common factor and still have an equation remaining 
with the same exponents p and q. This would be possible if in equation (1) 
there is a divisor F of all the terms x^, x2> . ••» %m> y^* y ^ .•. . , yn, where F 
is of the form z? and / is divisible by p and q, and z > 1. When solutions 
involving different sets of parameters a^ and b-j are combined by "addition," 
the resultant solution will not in general have such a common divisor (as in 
the examples given above). 

3. Solution for p and q Relatively Prime 

Theorem 2: Whenever p and q are relatively prime, equation (1) of Theorem 1 
has a nontrivial parametric integer solution for all positive values of m, n 
such that m + n > 2. 

Proof: In Theorem 1, let d = 1. We use the notation (p.q.m.n) to denote equa-
tion (1). Then (6) gives a solution of (p.q.s.l) for arbitrary s > 1, which we 
denote by (S) . If n = 1, set s = m to solve (p.q.m.n) with m integer param-
eters. Similarly, (7) gives a solution of (p.q.l.t) for arbitrary t > 1, which 
we denote by (T) . If m = 1, set t = n to solve (p.q.m.n) with n integer param-
eters. Next, assume that m > 2 and n > 2. Now set s = m - 1 and t = n - 1. 
Then "add" the two solutions (S) , (T) to obtain a new solution of (p.q.s + 1. 
t + 1) = (p.q.m.n). This solution will have s + t = w + n - 2 arbitrary inte-
ger parameters. Next, if m = 2 and n > 3, add solution (T) with t = 2 to 
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solution (T) with t = n - 2 to obtain a solution of (p.q.2.n) having n integer 
parameters. Similarly, if n = 2 and m > 3, add solution (S) with s = 2 to solu-
tion (S) with s = m - 2 to obtain a solution of (p.q.m.2) having m integer 
parameters. 

There remain only three cases, namely, (p.q.2.2), (p.q.2.3), and (p.q.3.2) a 
For the case 777 = n - 2, let a, Z? be distinct positive integers, arbitrary 
except that both are even or both are odd. Then aq + bq = 2w9 where w is an 
integer. Then, since p and q are relatively prime, we have Ap - Bq = 1 for 
integers A, B and 

wBq(aq + bq) = wBcL(2w) = 2wB* + AP-B{! = 2wAP. 
Then 

(aw5)^ + (bwB)q = (ZJA)P + (ŵ )P 

is a solution of (p.q.2.2) having two integer parameters a, 2? of equal parity 
but otherwise arbitrary. For the case m = 2, n = 3, let a, 2?, and e be 
distinct positive integers, arbitrary except that the sum aq + bq + cq - 2w, 
where w is an integer. This can be achieved by selecting a, bs and c to all be 
even, or by choosing one of a, b, or o to be even and the others odd. 

Then, as before, we have Ap - Bq = 1 for integers A, B9 and 

wBq(aq + bq + cq) = wBq(2w) = 2wBq+AP~Bq = 2wAP. 
Therefore, 

{awB)q + (bwB)q + (owB)q = (wA)P + (wAy 
is a solution of (p.q.2.3) having three integer parameters. In a similar 
manner, we can generate a three-parameter solution of (p.q.3.2). This com-
pletes the proof. 

Example 3: Let p = 8 and q = 5. First, to solve (8.5.2.2), take a = 3, b = 1 
so that 35 + l5 = 244 = 2(122) and w = 122. Then, since 2(8) - 3(5) = 1, we 
may take A = 2, B = 3, and 12215(35 + l5) = 12216(2), or 

[3(122)3]5 + [(1223)]5 = [(1222)]8 + [(1222)]8. 

To solve (8.5.2.3), take a = 2, b = c = 1, so that 25 + l5 + l5 = 34 = 2(17) 
and w = 17. Then, 1715(25 + I5 + I5) = 1716(2)3 or 

[2(173)]5 + (173)5 + (173)5 = (172)& + (172)8. 

4. Derived Solutions 

Theorem 3: If a specific nontrivial solution of equation (p.q.m.ri) exists for 
which all of the n terms yq- in equation (1) are equal, then a nontrivial solu-
tion exists for the equation (q + pr .p.n.m) , where r is any nonnegative 
integer. 

Proof: If 

nbq = t «l 
i= 1 

is the specific nontrivial solution of (p.q.m.n), then 

nbqbPr = bPr± af = ± (a^f - nbq + pr 

£= 1 i= 1 

is a solution of the equation (q + pr.p.n.m). 
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Example 4: A computer s ea r ch by the au thor y i e l d e d the s m a l l e s t n o n t r i v i a l 
s o l u t i o n of ( 6 . 2 . 3 . 1 ) as 1Q06 + 81 6 + 426 = 11348652. I f we s e t b = 1134865, 
we have 

(100&p)6 + (81br)s + (42Z?15)5 = b*T+1 

as a solution of equation (6P + 2.6.1.3) for p > 0. 

Theorem 3 can also be applied when p = q. The solutions recently found by 
Eklies [15] and Frye [16] to the equation x^ + y^ + 34 = th allows us to solve 
the equation (4p + 4.4.1.3), for any integer v > 0. In particular, for r = 1, 
we have 

(tx)4 + {ty)h + {tz)h = t8 

as a solution of (8.4.1.3), where x = 95800, y = 217519, z = 414560, and 
t = 422481. Other solutions to the equation (p.p.m.n) can be found in [1]. 

5. Incompleteness of the Theorems 

The solutions to (1) produced by the algorithms of Theorems 1, 2, and 3 are 
not complete. The smallest nontrivial solution of (4.2.3.1) is 

204 + 154 + 124 = 4812, 

which cannot be produced by Theorem 1, since 481 is prime to 20, 15, and 12. 
The smallest nontrivial solution of (4.3.2.2) is 

ll1* + 8^ = 243 + 173. 

This solution cannot be produced by Theorem 2, which yields only solutions of 
the form 

or by Theorem 3, which yields only solutions of the form 

x^ + x^ + . • . 4- x^ = ny^. 

6. Table of Solutions 

We supplement the discussion by presenting in Table 1 a list of solutions 
to equation (p.q.m.n) for p and q < 10 and m and n < 4. The solutions were 
obtained by a combination of methods, including the use of Theorems 1, 2, and 
3, computer search, and reference to the literature. As illustrated in the 
table, the solutions produced by use of Theorems 1, 2, and 3 are incomplete, 
since solutions exist for which the terms in (1) have no common divisor > 1. 
Table 1 lists the solutions in smallest integers known to the author. Some 
equations have no nontrivial solutions. The equations (6.3.1.2), (6.3.2.1), 
(9.3.1.2), (9.3.2.1), (9.6.1.2), and (9.6.2.1) have no nontrivial solution 
because, as Euler proved [17], the equation x3 + y3 = z3 has no solution with 
xy * 0; similarly, equations (4.2.2.1), (6.4.1.2), (8.2.2.1) and (8.6.2.1) can-
not be solved nontrivially because Euler showed that the equation xk + yh = z2 

has no solution with IJ/ * 0 [18]. The equations (6.2.2.1), (6.4.2.1), and 
(8.6.1.2) are impossible (because x3 + y3 = z3 is impossible) by a theorem of 
Lebesgue [19]. As shown in Table 1, the equations for small values of p, q, ms 
and n which appear to be the most difficult to solve in small integers are 
(6.3.3.2), (6.3.3.1), (6.4.2.2), (6.4.3.1), (6.4.3.2), (8.2.3.1), (8.4.2.2), 
(8.4.3.1), (8.4.3.2); (8.6.m.n) for m < 4, n < 4 except (8.6.1.3); (9.3.3.1); 
and (9.6.777.n) with m < 4, n < 4. Although solutions were not found for these 
specific values of p, q, rn9 n, we can obtain solutions for the same values of 
p, q with larger values of m, n by applying Theorem 1. For example, solutions 
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a9 + b \ 

15 then u - 65 and 

for (9.6.1.8) and (9.6.8.1) are 

u3 = (a3u)6 + (b3u)e + 3[(a2bu)e + (ab2u)s]9 u = c 

(z;2)6 = (a3v)3 + (2>3v)9 + 3[(a2£?;)9 + (ab2v)3], y 

where a and Z? are arbitrary integers. If a - 2 and b 
V = 513 and these solutions become 

659 = 5206 + 3(2606) + 3(1305) + 656; 

2631696 = 41049 + 3(20529) + 3(10269) + 5139. 

The author would be pleased to receive correspondence concerning any new solu-
tions to the equations discussed above. 

TABLE 1. Solutions of £ 

Legend: The entry x-^ , x2 hi > yi 

E y) 
J = i 
, y denotes the solution. 

146 

^ V m.n 1.2 

3.2 

4.2 

4.3 

5.2 

! 5.3 

5.4 

6.2 

6.3 

6.4 

6.5 

7.2 

7.3 

7.4 

7.5 

7.6 

2-2,2 5-10,5 
5-11,2 

5-24,7 
5-20,15 
2-2,2 
9-18,9 

2-4,4 
5-41,38 
3-6,3 

4-8,8 
2-2,2 

5-100,75 
5-117,44 
5-120,35 
Impossible 

Impossible 

2-2,2 
33-66,33 

2-8,8 
5-205,190 
5-250,125 
5-278,29 
2-4.4 
9-162,81 

! 8-32,32 

8-16,16 

2-2,2 
65-130,65 

1.3 

3-3,3,3 
3-5,1,1 

3-6,6,3 . 
3-7,4,4 
3-3,3,3 

3-9,9,9 
3-11,11,1 
6-18,12,6 
9-27,27,27 
3-3,3,3 

3-18,18,9 
3-26,7,2 

3-8,6,1 
5-22,17,4 
6-30,24,18 
481-20(481), 
15(481),12(481) 

3-3,3,3 
34-68,34,34 

3=45,9,9 
3-43,17,17 

3-9.9,9 
6-64,26,6 
11-55,55,33 
27-243,243,243 
27-81.81.81 

3-3,3,3 
66-132,66,66 

2.1 

2,1-3 2,2-4 
8,4-24 

Impossible 

4,4-8 32,32-128 
108,108-648 

2,2-8 8,8-256 

2,2-4 

8,8=16 

Impossible 

Impossible 

Impossible 

| 16,16-32 

2,2-16 
8,8-2048 

4,4-32 
32,32=4096 
2,2*4 

~474-8~ 

I 32,32-64 
2a 5 . a 5 -a 6 

a-129 

2.2 

4,1-7,4 4.2-6,6 

5,5-35,5 

11,8-24,17 
14,14-42,14 j 

3,1-12,10 
4,1=31,8 
6,6-24,12 
12,10-70.18 

41.41-123.41 I 

2,1-7,4 
3,1-21,17 

18,12=330,102 

172,86*=27778,16942 

Unknown I 

122,122-366,122 

4,1-127.16 
4,1-103,76 
4,1-92.89 

14,14-588.196 
16.12-620,404 

j 41 3 ,41 3 «*3(41 5 ) ,41 5 j 

1223,1223« j 
3(1224).1224 j 

365,365-1095,365 

[May 



EQUAL SUMS OF UNLIKE POWERS 

TABLE 1 (cont inued) 

\ m . n 1.2 

' P-q 

8.2 

8.3 

8.4 

8.5 

8.6 

8.7 

9.2 
9.3 

9.4 

J 9.5 

9.6 
9.7 

9.8 

5=500,375 i 
5=585,220 
5=600,165 
3-18,9 | 
4=32,32 

impossible 

8,8=32 
332-2(332), 

332 

Impossible 

2=2,2 

2=16,16 
Impossible 

2-4,4 
17-578,289 
16=128,128 

Impossible 
16=32,32 

2-2,2 
257-514,257 

1.3 

3-54,54,27 
3-63,36,36 | 
3=79,16,8 
6=108,72,36 
8=255,57,22 
9-243,243,243 
See Text, 

Section 4. 

9=27,27,27 

a«100a,81a, 
42a a-1134865 
3=3,3,3 

3=81,81,81 
3-24,18,3 

5-110,85,20 

3-9,9,9 

81-37,37,37 

Unknown 
81-35

835,35 

3-3,3,3 

2.1 I 

Impossible 

2,2=8 

Impossible 

8,8=32 

Impossible 

64,64=128 

2,2-32 
Impossible 

8,8-128 

2,2-4 

Impossible 
8,8-16 
2a3 ,a3-a4 

a-513 
1128,128-256 

2.2 

3,1-71,39 
3,2-79,24 
4,3-264,49 
6,6-144,72 

Unknown 

a2,a2-3a3,a3 

a-122 

Unknown 

a,a-3a,a a=1094 

5,5-1875,625 
4f2-60,36 
7,2-322,191 
8.4-480.288 I 
a,a«3a2,a2 a«41 

a4,a4**3a7,a7 | 
a-122 

I Unknown I 
a4,a4«3a5,a5 

a«1094 

a,a^3a,a a-3281 

I J 
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TABLE 1 (con t inued) 

1 >v f 

3.2 

4.2 

4.3 

5.2 

5.3 

5.4 

6.2 

6.3 

6.4 

6.5 

7.2 

7.3 

"n.n 2.3 

3,2=5,3,1 
3,3=5,5,2 

2,1=3,2,2 
3,1=8,3,3 
5,4=9,5,3 

2,1=5,2,2 
3,1=12,8,6 
3,3=22.1,1 

6,4=17,15,8 
8,3=32,6,3 
9,3=36,21,15 

9,9=18,9,9 

2,1=6,5,2 
5,3=127,12,9 
5,5=176,15,7 

7,5=46,33,1 
7,6=50,34,1 

3,3=6,3,3 
7,7=19,18,1 
7,7=21,14,7 

17,17=34,17, 
17 

2,1=11,2,2 
2,1=10,5,2 
2,1=8,7,4 

4,2=20,20,8 
5,4=44,21,4 

3.1 

3,2,1=6 
3,3,3=9 
6,2,1=15 

20,15,12=481 

5,5,3=11 
9,9,9=27 

3,3,3=27 
12,12,12=864 
15,5,5=875 

3,3,3=9 
24,24,24=288 
68,34,34=1156 

27,27,27=81 

100,81,42= 
1134865 

Unknown 

Unknown 

81,81, 
I 81 ,=243 

3,3,3=81 
12,12,12= 

10368 

9,9,9=243 

3.2 

3,1,1=5,2 
4,2,1=8,3 

— 
2,1,1=3,3 
3,2,1=7,7 
3,3,3«6,3 
8,5,4=17,4 

2,1,1=5,3 
2,2,1=7,4 

9,3,3=39,6 
9,9,9=54,27 

17,4,1=37,17 

3,2,1=25,13 
3,2,2=29,4 
3,3,2=39,1 

Unknown 

Unknown 

11,11,11-22,11 

2,1,1=11,3 
2,1,1=9,7 

3,3,1=15,10 
3,3,3=18,9 

3.3 

2,2,1=3,2,2 

2,2,1=5,2,2 
3,1,1=7,5.3 
4,1,1=5,5,2 

2,1,1=4,3,3 
2,2,1=6,5,2 j 

3,2,2=6,4,3 
3,3,3-8.6,1 ] 

6,4,3=9,7,3 
6,6,6-12,6,6 | 

2,1,1=5,5,4 
2,2,1-10,5,2 
2,2,1=11,2,2 

3,3,1=11,4,4 
6,2,1=30,25,16 

10,6,1=30,22,7 
10,9,1-34,21,5 

16,16,2=32,2,2 

2,2,1=15,4,4 
2.2,1-12.8,7 
2,2,2=16,8.8 

4,4,2=32,4,4 
6,6,2=76,49,15 

148 [May 



EQUAL SUMS OF UNLIKE POWERS 

TABLE 1 (con t inued) 

P Q > 

i 7>4 

7.5 

7.6 

8.2 

8.3 

8.4 ' 

8.5 

8.6 

8.7 

9.2 

9.3 

9.4 

9.5 

9.6 

9.7 

9.8 

m.n 2.3 

9,9*54,27,27 

a3,a3-2a4, 
a4,a4 a-17 

33,33-66, J 
33,33 | 

2.1-11,10,6 
2,1-12,8,7 

4,2-40,12,4 
4,2-33,31,4 | 

7,7-56,35,21 
7,7-55,39,16 

a2,a2-2a3, 
a3,a3a-17 

Unknown 

65,65=130, 
65,65 

3,3-162, 
81,81 

4,2-57,42,15 
| 4,3-65.19,7 

9,9-162,81. 
81 

a4.a4-2a7. 
a7,a7a-17 

Unknown 

l a 4 ,a 4 « B 2a 5
s 

a5,a5 a-65 

a,a-2a,a,a 
I a-129 

3.1 

3,3,3-9 

9,9,9»27 

243,243,243 
-729 J 

Unknown 

3.3,3-27 

Unknown I 

27,27,27-243 

Unknown 

36,36,36**37 

3,3,3-243 

I Unknown 

27,27,27=37 

3,3,3-9 

Unknown 

27,27,27-81 

37,37,37-38 

3.2 

a3,a3,a3«*6a5,3a5 

. a-459 

2a2,a2,a2-a3,a3 

a-65 ! 

a,a,a-6a,3a 
a=15795 ! 

3,3,2»97,63 

9,9,9-486,243 

Unknown 

112,112,112-
2(113),113 

Unknown 

43,43,43-86.43 

2,1,1-17,15 
2a,a,a«a5,a5 a-257 

12,8,8-1808,-784 

a,a,a-6a2,3a2 

a=459 

2a,a,a«a2,a2 

a«257 

Unknown 

2a3,a3,a3-a4,a4 

a»257 

2a7,a7,a7-a8»a8 

I a-257 

3.3 

6,1,1-23,3,2 
8,2,2-32,32,4 | 

8,4,4-16,16,8 

32,32,2-64,2,2 

2,1,1-11,11,4 
2,1,1-13,18,5 j 

2,1,1-5,5,2 
3,2,2-18,9,8 I 

4,4,3-18,13,8 
5,4,3-24,19,5 I 

a2,a2,a2-3a3, 
2a3,a3 a-92 

Unknown 

a,a,a-3a,2a,a 
a-772 

2,2,2-32,16.16 

3,2,1-23,18,3 1 
3,3,2-32,17,13 j 

8,8,2-128,4,4 

3a,2a,a-a2,a2,a2 

a-6732 j 

I Unknown 

I 2a3,a3,16-a4,32, | 
32 a-513 

128,128,2-256, 
2,2 
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