M. G. Monzingo

Southern Methodist University, Dallas, TX 75275 (Submitted June 1988)

In [1], U_n is defined to be a divisibility sequence if $U_m | U_n$ whenever m | n. It is conjectured that

$$U_n = A^n \sum_{i=0}^k c_i n^i,$$

A, c_i integers, is a divisibility sequence if and only if exactly k of the c_i are 0. In this note, the conjecture will be shown to be true.

Since the A^n factor offers no difficulty, it will be ignored. Furthermore, the sufficiency can be demonstrated easily; therefore, only the necessity will be proven in the following theorem.

Theorem: Let

$$U_n = \sum_{i=0}^k c_i n^i,$$

where the c_i are integers and $c_k \neq 0$, be a divisibility sequence; then, $c_i = 0$ for $0 \le i \le k$ - 1. (Note that there is no loss of generality in assuming that U_n has this form.)

Proof: Let n = mt, n, m, t positive integers. Then,

$$U_n = U_{mt} = \sum_{i=0}^k c_i (mt)^i = \sum_{i=0}^k c_i m^i t^i = \left(\sum_{i=0}^k c_i m^i\right) t^k - \sum_{i=0}^{k-1} c^i (t^k - t^i) m^i.$$

Since $U_m | U_n$ for all t, U_m must divide the second sum on the right-hand side. (Note that the first sum is U_m .) Now, fix t > 1 and let $d_i = c_i (t^k - t^i)$ for $0 \le i \le k - 1$; note that $t^k - t^k$.

 $t^i \neq 0$ for all *i*. Thus,

$$U_m \left| \sum_{i=0}^{k-1} d_i m^i \text{ for all } m. \right|$$

However, U_m is a polynomial in m of degree $k(c_k \neq 0)$; thus, for sufficiently large m,

$$\left| U_{m} \right| > \left| \sum_{i=0}^{k-1} d_{i} m^{i} \right|.$$

Hence,

 $\sum_{i=0}^{k-1} d_i m^i = 0 \text{ for all } m.$

This implies that d_i = 0 for all i, and, consequently, c_i = 0, 0 $\leq i \leq k$ - 1.

Reference

1. R. B. McNeill. "On Certain Divisibility Sequences." Fibonacci Quarterly 26.2 (1988):169-71.

1990]