ON CERTAIN DIVISIBILITY SEQUENCES

M. G. Monzingo

Southern Methodist University, Dallas, IX 75275
(Submitted June 1988)
In [1], U_{n} is defined to be a divisibility sequence if $U_{m} \mid U_{n}$ whenever $m \mid n$. It is conjectured that

$$
U_{n}=A^{n} \sum_{i=0}^{k} c_{i} n^{i}
$$

A, c_{i} integers, is a divisibility sequence if and only if exactly k of the c_{i} are 0. In this note, the conjecture will be shown to be true.

Since the A^{n} factor offers no difficulty, it will be ignored. Furthermore, the sufficiency can be demonstrated easily; therefore, only the necessity will be proven in the following theorem.
Theorem: Let

$$
U_{n}=\sum_{i=0}^{k} c_{i} n^{i}
$$

where the c_{i} are integers and $c_{k} \neq 0$, be a divisibility sequence; then, $c_{i}=0$ for $0 \leq i \leq k-1$. (Note that there is no loss of generality in assuming that U_{n} has this form.)
Proof: Let $n=m t, n, m, t$ positive integers. Then,

$$
U_{n}=U_{m t}=\sum_{i=0}^{k} c_{i}(m t)^{i}=\sum_{i=0}^{k} c_{i} m^{i} t^{i}=\left(\sum_{i=0}^{k} c_{i} m^{i}\right) t^{k}-\sum_{i=0}^{k-1} c^{i}\left(t^{k}-t^{i}\right) m^{i}
$$

Since $U_{m} \mid U_{n}$ for all t, U_{m} must divide the second sum on the right-hand side. (Note that the first sum is U_{m}.)

Now, fix $t>1$ and let $d_{i}=c_{i}\left(t^{k}-t^{i}\right)$ for $0 \leq i \leq k-1$; note that $t^{k}-$ $t^{i} \neq 0$ for all i. Thus,

$$
U_{m} \mid \sum_{i=0}^{k-1} d_{i} m^{i} \text { for all } m
$$

However, U_{m} is a polynomial in m of degree $k\left(c_{k} \neq 0\right)$; thus, for sufficiently large m,

$$
\left|U_{m}\right|>\left|\sum_{i=0}^{k-1} d_{i} m^{i}\right|
$$

Hence,

$$
\sum_{i=0}^{k-1} d_{i} m^{i}=0 \text { for all } m
$$

This implies that $d_{i}=0$ for all i, and, consequently, $c_{i}=0,0 \leq i \leq k-1$.

Reference

1. R. B. McNeill. "On Certain Divisibility Sequences." Fibonacci Quarterly 26.2 (1988):169-71.
