NOTE ON THE RESISTANCE THROUGH A STATIC
 CARRY LOOK-AHEAD GATE

Mark Nodine
Brown University, Providence, RI 02912
(Submitted March 1988)

In this paper, I show that a problem arising in hardware design has a solution that is the ratio of consecutive Fibonacci numbers.

One of the problems in VLSI designs of adders is to minimize the amount of time needed for addition [1]. A straightforward way of adding is to have a separate adder cell for each bit of the operands. The function to be performed by each one-bit adder cell is to take inputs A_{i} and B_{i} and a carry bit C_{i-1} from the previous stage, and compute

$$
\operatorname{SUM}_{i}=A_{i} B_{i} C_{i-1}+A_{i} \bar{B}_{i} \bar{C}_{i-1}+\bar{A}_{i} \bar{B}_{i} C_{i-1}+\bar{A}_{i} B_{i} \bar{C}_{i-1}
$$

$$
=A_{i} \oplus B_{i} \oplus C_{i-1}
$$

and

$$
C_{i}=A_{i} B_{i}+A_{i} C_{i-1}+B_{i} C_{i-1},
$$

where SUM_{i} is the i th bit of the sum and C_{i} becomes the carry input to the next stage. Unfortunately, this scheme means that the $i^{\text {th }}$ adder cannot compute its result until the ($i-1)^{\text {th }}$ adder has propagated its carry to it.

One way to get around this problem is to look ahead to compute the carry bit to be propagated to each stage. The idea is that each adder can make a quick decision whether to propagate or generate a carry by using the formulas:
$\operatorname{GEN}=A_{i} B_{i} \quad$ and \quad PROP $=A_{i} \oplus B_{i}$.
A carry from the previous stage will be propagated if either A_{i} or B_{i} is true, and one will be generated at this stage, regardless of the previous carry value, if both A_{i} and B_{i} are true. The pull-down transistor part of a 4-stage static carry look-ahead gate as it might be implemented in CMOS or nMOS is shown in Figure 1, where the output is the negation of the fourth carry bit value, the inputs on the left are the zeroth carry bit and the first four PROP values, and the inputs on the right are the first four GEN values.

FIGURE 1. 4-stage static carry look-ahead gate
The circuit works by setting things so that the output \bar{C}_{4} will be high (true) unless there is a path between it and ground. The overbar indicates a negated signal, that is, one which is true when it is at ground and false when
it is at the power supply voltage. The transistors can be viewed as switches which allow current to flow if their inputs are high (true). In this circuit, there will be a path to ground if G_{3} is true, which means that the fourth stage would generate a carry. If there is no carry generated in the fourth stage, the output can still be pulled low (true) if a carry was propagated through the fourth stage (P_{3} is true) and a carry was somehow passed through the third stage. This analysis proceeds recursively, so that if, for example, all the generate bits were false, a carry would only be generated if all the propagate bits were true and the initial C_{0} carry was true.

$$
\begin{aligned}
& \left\{R_{0}=1\right. \\
& \left\{\begin{array}{l}
\left\{\begin{array}{l}
R_{1}=2111 \\
=2 / 3
\end{array}\right\}
\end{array}\right. \\
& \}^{5}\left\{\begin{array}{l}
R_{n}=\left(R_{n+1}+1\right) \mid 1 \\
=\left(R_{n+1}+1\right) /\left(R_{n+1}+2\right)
\end{array}\right.
\end{aligned}
$$

FIGURE 2. Source of the recurrence relation for resistance
In order to compute the delay through this circuit, it is necessary to compute the resistance and capacitance between ground and the output. This note concentrates on the resistance. The approximation made in computing resistance in this paper is that each transistor with a high input is in the conducting state and represents a unit of resistance. A generalized n-stage resistance network for this circuit has a very regular structure, as shown in Figure 2. A "zero-stage" look-ahead gate would comprise but a single resistor and thus have a resistance of one. A one-stage gate has a series of two resistors in parallel with a third; the composite resistance is computed by using the parallel resistance formula:

$$
a \| b=\frac{a b}{a+b} .
$$

In this case, $a=2$, since resistors in series sum, and $b=1$. Thus, $R_{1}=2 / 3$, and we get a general recurrence relation for R_{n} :

$$
\begin{aligned}
& \mathrm{R}_{0}=1 \\
& \mathrm{R}_{n}=\frac{\mathrm{R}_{n-1}+1}{\mathrm{R}_{n-1}+2}
\end{aligned}
$$

We can attack this recurrence by splitting R_{n} into its numerator and denominator:

$$
\mathrm{R}_{n}=\frac{\mathrm{N}_{n}}{\mathrm{D}_{n}}=\frac{\mathrm{N}_{n-1} / \mathrm{D}_{n-1}+1}{\mathrm{~N}_{n-1} / \mathrm{D}_{n-1}+2}=\frac{\mathrm{N}_{n-1}+\mathrm{D}_{n-1}}{\mathrm{~N}_{n-1}+2 \mathrm{D}_{n-1}}
$$

So we have a double recurrence:

$$
\begin{array}{ll}
\mathrm{N}_{0}=1 & \\
\mathrm{~N}_{n}=\mathrm{N}_{n-1}+\mathrm{D}_{n-1}, & n \geq 1 \\
\mathrm{D}_{0}=1 & n \geq 1
\end{array}
$$

So far, we have only demonstrated this as a formal solution because the fraction N_{n} / D_{n} may not be in lowest terms. The lemma below demonstrates that this is the actual lowest-term solution.

Lemma: N_{n} and D_{n} are relatively prime.
Proof: This is a proof by induction. This base case is easy:

$$
\operatorname{gcd}\left(N_{0}, D_{0}\right)=\operatorname{gcd}(1,1)=1
$$

Assume that $\operatorname{gcd}\left(\mathrm{D}_{n-1}, \mathrm{~N}_{n-1}\right)=1$. We use a result by Euclid that if $n>m$, then $\operatorname{gcd}(n, m)=\operatorname{gcd}(m, n-m)$ (see [2]). Thus,

$$
\begin{aligned}
\operatorname{gcd}\left(\mathrm{D}_{n}, \mathrm{~N}_{n}\right) & =\operatorname{gcd}\left(\mathrm{N}_{n-1}+2 \mathrm{D}_{n-1}, \mathrm{~N}_{n-1}+\mathrm{D}_{n-1}\right) \\
& =\operatorname{gcd}\left(\mathrm{N}_{n-1}+\mathrm{D}_{n-1}, \mathrm{D}_{n-1}\right) \\
& =\operatorname{gcd}\left(\mathrm{D}_{n-1}, \mathrm{~N}_{n-1}\right) \\
& =1 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { We can create ordinary generating functions } \mathrm{N}(z) \text { and } \mathrm{D}(z) \text { to find the } \\
& \text { closed-form solutions for the series. If we define } \mathrm{N}_{n}=\mathrm{D}_{n}=0 \text { for } n \text { < } 0 \text { (the } \\
& \text { ratio } \mathrm{R}_{n} \text { will thus be undefined in those cases), then we have formulas for them } \\
& \text { which are valid for all } n \text { : } \\
& \qquad \mathrm{N}_{n}=\mathrm{N}_{n-1}+\mathrm{D}_{n-1}+\delta_{n 0} \\
& \qquad \mathrm{D}_{n}=\mathrm{N}_{n-1}+2 \mathrm{D}_{n-1}+\delta_{n 0} .
\end{aligned}
$$

Multiplying both sides of these equations by z^{n} and summing over all n gives us the ordinary generating functions:
(1) $\quad \mathrm{N}(z)=z \mathrm{~N}(z)+z \mathrm{D}(z)+1$
(2) $\quad \mathrm{D}(z)=z \mathrm{~N}(z)+2 z \mathrm{D}(z)+1$.

Subtracting (2) - (1) and leaving off the (z)'s for clarity,

$$
D-N=z D
$$

or
(3) $\quad N=D(1-z)$.

Plugging this back into (2) gives

$$
\mathrm{D}=\frac{1}{1-3 z+z^{2}}
$$

Hence, by (3),

$$
N=\frac{1-z}{1-3 z+z^{2}}
$$

We can get a closed-form expression for N_{n} from the generating function by factoring the denominator $\left(1-3 z+z^{2}\right)$ into $(1-\alpha z)(1-b z)$ and expanding in terms of partial fractions. Using the quadratic formula, we get that

$$
a=\frac{3+\sqrt{5}}{2}, \quad b=\frac{3-\sqrt{5}}{2}
$$

Here we make the observation that, if we let

$$
\phi=\frac{1+\sqrt{5}}{2}, \quad \hat{\phi}=\frac{1-\sqrt{5}}{2}
$$

then

$$
a=\phi^{2}, \quad b=\hat{\phi}^{2}
$$

We can also note that
(4) $\quad \phi^{2}-1=\phi, \quad \hat{\phi}^{2}-1=\hat{\phi}$
and
(5) $\quad \phi^{2}-\hat{\phi}^{2}=\sqrt{5}$.

Therefore, to expand the partial fraction

$$
\frac{1-z}{\left(1-\phi^{2} z\right)\left(1-\hat{\phi}^{2} z\right)}=\frac{\alpha}{1-\phi^{2} z}+\frac{\beta}{1-\hat{\phi}^{2} z}
$$

we can find α by multiplying by $\left(1-\phi^{2} z\right)$ and setting z to $1 / \phi^{2}$:

$$
\alpha=\frac{\phi}{\sqrt{5}}
$$

using identities (4) and (5).
Similarly,

$$
\beta=-\frac{\hat{\phi}}{\sqrt{5}} .
$$

This gives us a closed form for N_{n} :

$$
\mathrm{N}=\sum_{n} \mathrm{~N}_{n} z^{n}=\alpha \sum_{n}\left(\phi^{2} z\right)^{n}+\beta \sum_{n}\left(\hat{\phi}^{2} z\right)^{n}
$$

by substituting the series for the partial fraction form. Equating coefficients of z^{n} :

$$
N_{n}=\frac{1}{\sqrt{5}}\left(\phi \phi^{2 n}-\hat{\phi} \hat{\phi}^{2 n}\right)=\frac{1}{\sqrt{5}}\left(\phi^{2 n+1}-\hat{\phi}^{2 n+1}\right)
$$

We can get D_{n} from N_{n} :

$$
\begin{aligned}
\mathrm{D}_{n}=\mathrm{N}_{n+1}-\mathrm{N}_{n} & =\frac{1}{\sqrt{5}}\left(\phi^{2 n+3}-\hat{\phi}^{2 n+1}\right)-\frac{1}{\sqrt{5}}\left(\phi^{2 n+3}-\hat{\phi}^{2 n+1}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{2 n+2}-\hat{\phi}^{2 n+2}\right)=F_{2 n+2}
\end{aligned}
$$

where F_{i} is the i th Fibonacci number [2]. It seems there should have been an easier way to find the solution. We can rewrite the joint recurrences slightly to yield

$$
\begin{array}{ll}
\mathrm{N}_{0}=1 & \\
\mathrm{~N}_{n}=\mathrm{N}_{n-1}+\mathrm{D}_{n-1}, & n \geq 1 \\
\mathrm{D}_{0}=1 & \\
\mathrm{D}_{n}=\mathrm{N}_{n}+\mathrm{D}_{n-1}, & n \geq 1
\end{array}
$$

Therefore, we can build the following table:

n	$\mathrm{~N}_{n}$	D_{n}	R_{n}
0	1	1	1.000000
1	2	3	0.666667
2	5	8	0.625000
3	13	21	0.619048
4	34	55	0.618182
5	89	144	0.618056

In other words, we have the Fibonacci numbers alternating between the N_{n} 's and the D_{n} 's. Thus,

$$
\mathrm{R}_{n}=\frac{F_{2 n+1}}{F_{2 n+2}}=\frac{\phi^{2 n+1}-\hat{\phi}^{2 n+1}}{\phi^{2 n+2}-\hat{\phi}^{2 n+2}}
$$

It is also possible to compute the asymptotic resistance, since as $n \rightarrow \infty, \hat{\phi}^{n} \rightarrow 0$ but $\phi^{n} \rightarrow \infty$. This gives

$$
\mathrm{R}_{\infty}=\frac{1}{\phi}=\frac{\sqrt{5}-1}{2} .
$$

The convergence, it can be seen, is quite rapid.
A similar result for the resistance through a ladder network was obtained by Basin [3] and independently by Manuel \& Santiago [4]. The resistance of their circuit was also a ratio of consecutive Fibonacci numbers, but with the larger number in the numerator:

$$
\mathrm{R}_{n}=\frac{F_{2 n}}{F_{2 n-1}}
$$

References

1. N. Weste \& K. Eshraghian. Principles of CMOS VLSI Design: A Systems Perspective, pp. 310-323. Reading, Mass.: Addison-Wesley, 1985.
2. D. Knuth. The Art of Computer Programming: Fundamental Algorithms, Vol. 1, p. 2. Reading, Mass.: Addison-Wesley, 1973.
3. S. L. Basin. "The Fibonacci Sequence as it Appears in Nature." Fibonacci Quarterly 1.1 (1963):53-56.
4. George Manuel \& Amalia Santiago. "An Unexpected Appearance of the Golden Ratio." College Math. J. 19.2 (1988):168-170.
