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1. Introduction 

The Hermite polynomials, Legendre polynomials, Laguerre polynomials, 
Gegenbauer polynomials, and Jacobi polynomials belong to the system of classical 
orthogonal polynomials (see, e.g., [4]). For each class of these polynomials, 
it is well known that the orthogonal property, differential equation (gen-
eralized) , Rodrigues representation, and three-term recurrence relation are all 
equivalent (see, e.g., [4]) in the sense that any one of the above four 
properties implies the other three. 

Throughout this paper we concentrate exclusively on the Hermite polynomials 
Hn(x). There exist in the literature (see, e.g., [l]-[3], [5], [6], [8]) many 
starting points for developing the properties of the Hermite polynomials: (i) 
Hermite differential equation (see, e.g., [6]), (ii) Rodrigues' representation 
[8], (iii) the simple but beautiful relation [9], given in Arfken ([2], Prob. 
13.1.5, p. 718), 

(1) Hn(x) = (2x - D)nl, D E d/dx, n > 0, 

and (iv) the following generating function (see, e.g., [l]-[3], [5]) 

(2) exp(2tx - t1) = Y, Hn(x)tn/nl 
n= 0 

Many generating functions exist for the Hermite polynomials (see, e.g., [5]). 
However, throughout this paper by generating function for Hn(x) we only mean 
the more familiar one defined by (2). Moreover, we follow the convention that 
W® = I, the unit operator, for any operator W. The purpose of this paper is to 
present the following relation 

(3) Hn(x) = g'1[2x - D + g~1{Dg}]ng, D = d/dx, n > 0, 

where g (x) is any differentiable function not identically zero, as the spring 
(starting point) for the starting points. We begin with a derivation of (3) 
and then show that all properties of the Hermite polynomials and many a beau-
tiful relation follow from it. 

2. Spring of Springs 

Actually, (3) is a combination of the pure recurrence relation (see, e.g., 
[5]) 

(4) Hn+i(x) = 2xHn(x) - 2nHn_1(x), n > 1, 

and the differential recurrence relation (see, e.g., [5]) 

(5) DHn(x) = 2nHn_l(x), n > 1, 
and the results (see, e.g., [5]) 

(6) H0(x) = 1, 

(7) H1(x) = 2x. 
The proof is as follows. Using (4) and (5), we have 
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(8) Hm+l(x) = 2xHm(x) - 2mEm_l(x) = (2x - D)Hm(x) , m > 1. 

Moreover, i n view of (6) and ( 7 ) , Hl(x) = (2x - D)H0(x). Thus, 

(9) Hn(x) = (2x - D)Hn_l(x), n > 1. 

If g(x) is any differentiable function not identically zero, then 

(10) gHn(x) = g(2x - D)Hn_l(x) 

= [2x - D + g-l{Dg}]{gHn_l(x)}9 n > 1. 

Iteration of (10) yields 

(11) gHn(x) = [2x - D + g-l{Dg}]ng5 n > 1, 

since HQ(X) = 1. However, (11) is also true for n = 0. Relation (3) now fol-
lows immediately. 

The interesting point about (3) is that one need not specify what g{x) is. 
Any differentiable function not identically zero will suffice. Thus, for exam-
ple, when g = 1, we obtain the beautiful relation given in Arfken ([2], Prob. 
13.1.5, p. 718): 

(1) Hn(x) = (2x - D)nl9 D = d/dx, n > 0. 

When g = exp(-£2/2), we derive the relation 

(12) Hn(x) = exp(x2/2)(x - £)nexp(-x2/2), n > 0, 

a result that is very useful in the quantum mechanical treatment of a simple 
harmonic oscillator (see, e.g., [2]). When g = exp(-x2), we deduce from (3) 
the Rodrigues' representation (see, e.g., [5]) 

(13) Hn(x) = (-l)nexp(^2)Z)n{exp(-x2)}5 n > 0. 

It is now clear that the spring of springs [i.e., (3)], the Rodrigues' repre-
sentation [i.e., (13)], Arfken's formula [i.e., (1)] and (12) are all equiva-
lent. 

Relation (3) has been obtained as a natural consequence of the standard 
properties of the Hermite polynomials. We shall now show that (3) is a spring 
for developing the properties of Hn(x). First we prove (9) starting from (3): 

Hn(x) = g~l[2x - D + g~l{Dg})ng 

= g~l[2x - D + g-l{Dg}]{gHn.l(x)} 

= (2x - D)Hn_i(x) s n > 1. 
Relation (9) plays a crucial role in establishing the results that (1) and (3) 
are springs of the Hermite polynomials. For example, the differential recur-
rence relation can be obtained from (9). If DHM(x) = 2MEM_l(x) for some M > 1, 
then 

(14) DHM+l(x) = D{(2x - D)HM(x)} 

= 2HM(x) + (2a; - D)DHM(x) 

= 2HM(x) + (2x - D){2MHM_l(x)} 

= 2HM(x) + 2MHM(x) 

= 2(M + l)HM{x). 
By using induction, we now obtain the differential recurrence relation, (5). 
The three-term recurrence relation, (4), then follows from (9) and (5). The 
differential equation satisfied by HM(x) can be obtained from (14), since 

2HM(x) + (2x - D)DHM(x) = 2(M + l)#M(x), 

1990] 157 



SPRINGS OF THE HERMITE POLYNOMIALS 

so that 

(15) {D1 - 2xD + 2M)HM(x) = 0, M > 0. 

From (9), one can obtain the power series expansion (see, e.g., [5]) using 
induction: 

(16) Hn(x) = £ ^ — f — \ , n > 05 
s=0 sl(n - 2s)l 

where [r] is the greatest integer < r. Though tedious, the method is straight-
forward. For an alternative method of arriving at the power series expansion 
from (1), see also [8]. Following Simmons ([6], p. 191), we can obtain the 
generating function [see (2)] from the power series expansion. We show that 
(2) can also be derived from the pure recurrence relation as follows: (i) 
Assume the existence of a generating function of the form 

(17) G(x, t) = J2 Hn(x)tn/nl 
n= 0 

(ii) Differentiate G(x, t) partially with respect to t and use the three-term 
recurrence relation and (6) and (7) to develop the following first-order dif-
ferential equation for G(xs t): 

(18) G~l(dG/dt) = 2x ~ It. 

(iii) Holding x fixed, integrate both sides of (18) with respect to t , from 0 
to t, to obtain 

(19) G(x9 t) = G(x, 0)exp(2xt - t1). 

(iv) Since G(x, 0) = HQ(x) = 1, by (6), it follows that 

(20) G(x, t) = exp(2;rt - t2) . 

Our procedure outlined above is just similar to the one used by Arfken ([2], 
Prob. 13.1.1, p. 717) to arrive at the generating function from the differen-
tial recurrence relation, (5), supplemented with the results 

(21) H2m+l(0) = 0, m > 0, 

(22) H2m(0) = (-l)ffl(W!W, m > 0. 

Rodrigues' representation is a simple corollary of (3) and the orthonormal 
property, 

(23) I exp(-xz)Hm(x)Hn(x)dx = 2nn!/rr6„ 

can be proved using it (see} e.g., [8]). Szego [10] has elegantly shown that 
real orthogonal polynomials associated with an even weight function and an 
interval of orthogonality symmetric with respect to the origin have a definite 
parity. Hence, 

(24) Hn(-x) = {-l)nEn{x)i n > 0. 
In other words, Hn(x) can contain only those powers of x that are congruent to 
n (mod 2). Using this result, Descartesfs rule of signs, and the properties of 
the zeros of Hn(x) (see, e.g., [5], [10]), it has been proved in [7] that Hn(x) 
does contain only those and all those powers of x that are congruent to n (mod 
2). Moreover, the adjacent coefficients of En{x), n ^ 2, alternate in sign [7]. 
See also (16). Thus, starting from (3), one can obtain the differential recur-
rence relation, pure (i.e., without derivative) recurrence relation, differen-
tial equation, and orthonormal property satisfied by the Hermite polynomials in 
addition to their Rodrigues representation, power series expansion, and 
generating function. 
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3. The Relat ion Hn(x) = 2 n { e x p ( - D 2 / 4 ) } xn 

We now prove the fo l lowing i n t e r e s t i n g r e l a t i o n from B e l l ( [ 3 ] , Th. 5 . 3 , p . 
159): 
(25) Hn(x) = 2 n { e x p ( - D 2 / 4 ) } x n . 

Here exp(-D2/4) is formally expanded as 

(26) exp(-£2/4) = JT {(-l/4)s/s!}£2s. 
s = 0 

Since 

({nl/(n - 2s)\}xn~ls , 2s < n, 
(27) D2sxn = < 

( o , 2s > n5 

one can obtain (25) directly from the power series expansion, (16), using (26) 
and (27). Our proof of (25) is an alternative to that given in Bell ([3], p. 
159). By retracing the steps for obtaining (25) from (16), one can show that 
(25) implies (16). Thus, the power series expansion and Bell!s formula [i.e., 
(25)] are equivalent. 

4. Status of the Springs 

We can clearly classify the starting points into two distinct groups: (a) 
full/complete/self-contained springs and (b) associate (incomplete or partial) 
springs. To the first category belong the generating function, the Rodrigues 
representation, the power series expansion, relations (1), (3), and (25), and 
the orthonormal property. These springs specify the Hermite polynomials com-
pletely. The differential equation, the pure and differential recurrence 
relations, the orthogonal property, and (9) belong to the second category 
because they require supplementary conditions to specify the Hermite 
polynomials fully. The constant term of any Hn(x), n > 1, cannot be found from 
the differential recurrence relation, (5), since the operator D simply swallows 
it. In the case of the orthogonal property, we require the value of the right-
hand side of (23) when m = n, for all n > 0 (the square root of the reciprocal 
of this quantity is the so-called normalization constant), and to make (9) a 
complete spring we require the result HQ(X) = 1. 

An outline of the development of the various properties from the springs is 
shown schematically in Figure 1. (Of course, not all the paths are shown.) 
Certain properties can be more easily obtained from a given spring, while it 
may be tedious to derive another property from the same spring. For example, 
in view of (26), we have 

[D exp(-Z^/4)]/(x) E {exp(-£2/4)}(£/), 
where f(x) is any differentiable function of x. Hence, from (25) and (26), we 
have 

DHn(x) = £[2n{exp(-£2/4)}xn] 

= 2n{exp(-£2/4)}(Z^) 

= 2n[2n"1{exp(-£2/4)}xn-1] 

= 2nHn_i(x), n > 1. 
Probably this is the simplest proof of the differential recurrence relation. 
The method of induction plays an elegant role in developing certain properties 
from a given starting point. Some properties can be independently obtained 
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from a given spring without going e i ther via the generating function or via the 
Rodrigues representat ion. 

FIGURE 1 

Schematic diagram showing the development of the various properties of the 
Hermite polynomials. Full springs are shown inside the circles. Squares 
enclose the associate starting points. Triangles stand for the supple-
mentary conditions necessary to make the incomplete springs complete ones. 
We have not given the complete paths to arrive at all the properties, 
starting from a given spring. The following abbreviations have been used: 
(a) AF: Arfken's formula, (l) of text. (b) BF: Bell's formula, (25) of 
text. (c) CAF: Corollary to Arfken's formula, (9) of text. (d) DE: 
Differential equation. (e) DRR: Differential recurrence relation. (f) GF: 
Generating function. (g) LC: Leading coefficient of each and every Hn(x), 
n ^ 0 (= 2n); supplement to the differential equation. (h) ONP: Ortho-
normal property. (i) OP: Orthogonal property. (A knowledge of the leading 
coefficient or the normalization constant for every Hn(x) makes it a 
complete spring.) (j) PRR: Pure (three-term) recurrence relation. (k) 
PSE: Power series expansion. (1) RR: Rodrigues' representation. (m) SD: 
Supplement to the differential recurrence relation, (21) and (22) of text. 
(n) SOS: Spring of springs, (3) of text. (o) SP: Supplement to the pure 
recurrence relation, (6) and (7) of text. 
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5. Conclusions 

Any relation or a set of relations that can specify all the Hermite poly-
nomials completely should be a full starting point. One can level criticisms 
against any spring. For Simmons ([6], p. 189), the generating function method 
is totally unmotivated, though it has the advantage of efficiency for deducing 
the properties of the Hermite polynomials. While he prefers to develop the 
properties from the differential equation, Andrews ([1], p. vii) introduces the 
classical orthogonal polynomials by the generating function method and Rain-
ville [5] revels in the generating function approach. Relation (1) is simple 
and handy, but may have the obvious weakness of being completely unmotivated. 
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