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PROBLEMS PROPOSED IN THIS ISSUE 

H-443 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

Let us cons ide r the r e c u r r e n c e 
wn = rmn_l + wn_2, 

where m > 0 i s an i n t e g e r and Un, Vn the s o l u t i o n s def ined by 

UQ = 0 , Ul = 1 ; VQ = 2 5 V1 = 777. 

Show t h a t , i f q i s an odd d i v i s o r of m2 + 1, then 
Vq E 777 (mod q) . 

H-444 Proposed by H.-J. Seiffert, Berlin, Germany 

Fn = £ ( .^[ (n-2fc + 2 ) / 5 ] /n 

Show t h a t , for n = 0, 1, 25 . 
[n/2] 

, _ ! ^[(n- 2k+2)/5] / 

( 5 , n - 2k) = 1 

where (p , s) denotes the g r e a t e s t common d i v i s o r of r and s and [ ] the g r e a t e s t 
i n t e g e r f u n c t i o n . 

H-445 Proposed by Paul S. Bruckman, Edmonds, WA 

Establish the identity: 

(1) V u(n)( = z - zl , z e (E , \z\ < 1, and \i is the Mobius function. 

As special cases of (1), obtain the following identities: 

(2) ]T ]i(2n)/F2ns = -32s/5, s = 1, 3, 5, ..., 3 = %(1 - ^5) ; 
n= 1 

(3) £ y(2n - l)/%„-i)s = "3s, s = 1, 3, 5, ...; 
«= l 

(4) £ Vin)/Fns = ( 3 s - 3 2 s ) / 5 5 s = 25 4 , 6, . . . ; 
rc = l 
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(5) £ ( - l ) " - l y ( n ) / f „ 8 •- ( 0 s + e 2 s ) / 5 , s = 2 , 4 , 6, . . . ; 

(6) 

(7) 

£ ( - l ) " - 1 u ( 2 n -
n = 1 

£ ( - l ) » - i p ( 2 n -

" D / V - D a = - e S / 5 > S = I, 3, 5, 

- ! ) / % „ - 1 ) 8 = 6 s , s = 2 , 4 , 6, . . 

SOLUTIONS 

Rather Compact 

H-421 Proposed by Piero Filipponi, Rome, Italy 
(Vol. 26, no. 2, May 1988) 

Let the numbers Un(m) (or merely Un) be def ined by the r e c u r r e n c e r e l a t i o n 
[1] 

U,0 = mU , . + U ; Un = 0 , U, = 1 , 
?z + 2 r z + 1 7-2 s 0 7 1 

where m e N = { 1 , 25 . . . } . 
Find a compact form for 

S(fc, ft, n) -njlUk + jhh^n-i-m {k> h, neN). 
J = 0 

Note that, in the particular case m = 1, 5(1, 1, n) = F ^ is the ?zth term of 
the Fibonacci first convolution sequence [2]. 

References 

1. M. Bicknell. "A Primer on the Pell Sequence and Related Sequences." Fibo-
nacci Quarterly 13. 4 (1975):345-49. 

2. V. E. Hoggatt, Jr. "Convolution Triangles for Generalized Fibonacci Num-
bers." Fibonacci Quarterly 8. 2 (1970)rl58~71. 

Solution by the proposer 

It is known [1] that 

(1) Un = (an - 3n)/A (Binet form) 

where 
'A = (m2 + 4) 1 / 2 , 

(2) \a = fa + A)/2, 

= (772 - A)/2. 

Analogously, the numbers V (jri) (or merely Vn) can be defined as either 

(3) ^ + 2 ""Vn+1 + Vn; VQ = 2, ^ - m , 

or 

(4) Vn = Un_l + ^ + ]_ = a" + 3n (Binet form). 

The following identities will be used throughout the solution: 

(5) VJ + k - (-1)^..,= L%Uk; 

(U.„ - (-l)n+1Un, 
(6) { 
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(-l)s-lxr+2ysr + t + t f * + l 7 e ( p + 1 ) + t + ( - D * ^ . , - Vt 

(7) X > % f + t = , ̂  i , 
j = 0 (-1)S_1X2 + VSX - 1 

where s and t are arbitrary integers and x is an arbitrary quantity subject to 
the restriction x * a~s , 3~s• 

Identities (5) and (6) can be readily proven with the aid of (1), (2), and 
(4) . The proof of (7) is slightly more complicated but several approaches are 
possible. One of these proofs is given in "A Matrix Approach to Certain Iden-
tities" by P. Filipponi & A. F. Horadam (Fibonacci Quarterly 26.2 [1988]:115-
26). 

Now, from (5), we can write 

whence 

(8 ) S(k, h, n) = — - — - 2^ ( - 1 ) v2h3-{n-\)h 
A z A z j = o 

= riV2k + { n - m _ (-i)fe + (*-l)fe 
A 2 " A 2 Kn* 

U s i n g ( 7 ) , ( 6 ) , and ( 5 ) , l e t u s c a l c u l a t e t h e q u a n t i t y Xh^ni 

C a s e 1 : h i s odd [x = - 1 i n ( 7 ) ] 

_ 2 ( - l ) ^ 1 [ ^ ( n + 1 ) + 7 M w - i ) ] _ 2(-lV-l^UhnUh 
( 9 ) Xnah V2h + 2 V2h + 2 

U s i n g (1 ) and ( 4 ) , (9 ) becomes 

( 1 0 ) XKn = 2(-l)n^UhJUh. 

C a s e 2 : h i s e v e n [x = 1 i n ( 7 ) ] 

2 [ F M n + 1 ) - FMn-1}] 2 A ^ A _ ? 
( 1 1 ) Xh = = — — - 2Uhn/Uh. 

V2h Z V2h L 

From ( 8 ) , ( 9 ) , and ( 1 0 ) , we o b t a i n 

( 1 2 ) S(k, h, n) = [nV2k + (n_l)h - 2(-l)kUhn/Uh]/L2. 

The relationship (4) allows us to express S(k, h, n) merely in terms of numbers 
Un. 

As a particular case, we have 

( 1 3 ) 5 ( 1 , 1 , n) = [nVn+1 + 2Un] I A2 = [nUn + 2 + (n + 2 ) £ / J / A 2 . 

A l s o s o l v e d b y P . Bruckman, L. Kuipers, H.-J. Seiffert, and N . A . VoZodin. 

L o t s a S e q u e n c e s 

H - 4 2 2 P r o p o s e d b y L a r r y Taylor, Rego Park, NY 
(Vol. 26, no. 2, May 1988) 

( A l ) G e n e r a l i z e t h e n u m b e r s ( 2 , 2 , 2 , 2 , 2 , 2 , 2) t o fo rm a s e v e n - t e r m 
a r i t h m e t i c p r o g r e s s i o n of i n t e g r a l m u l t i p l e s of F i b o n a c c i a n d / o r L u c a s n u m b e r s 
w i t h common d i f f e r e n c e Fy. . 
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(A2) Generalize the numbers (1, 1, 1, 1, 1, 1) to form a six-term arith-
metic progression of integral multiples of Fibonacci and/or Lucas numbers with 
common difference Fn . 

(A3) Generalize the numbers (4, 4, 4, 4, 4) to form a five-term arithmetic 
progression of integral multiples of Fibonacci and/or Lucas numbers with common 
difference 5Fn. 

(A4) Generalize the numbers (3, 3, 3, 3), (3, 3, 3, 3), (3, 3, 3, 3) to 
form three four-term arithmetic progressions of integral multiples of Fibonacci 
and/or Lucas numbers with common differences Fn , 5Fn, Fn . 

(B) Generalize the Fibonacci and Lucas numbers in such a way that, if, the 
Fibonacci numbers are replaced by the generalized Fibonacci numbers and the 
Lucas numbers are replaced by the generalized Lucas numbers, the arithmetic 
progressions still hold. 

Solution by Paul S. Bruckman, Edmonds, WA 

We indicate below the solutions to parts (A1)-(A4) of the problem: 

(AD (-2F„_2, Fn_3, 2Fn_lt Ln, 2Fn+1, Fn + 3 , 2F + 2 ) ; 

(A2) (-£„-!> -F
n-2> Fn-\> F

n+1' Fn+2> Ln+1}> 

(A3) <-4£„_l. - V 3 '
 2Ln> Ln + 3> 4 in + l > ; 

(A4) (i) (3Fn+1, Ln+2, Fn+h, 3Fn+2); 

(ii) {--iLn_x, ln„2, Ln + 2 , 3Ln + 1); 

(iii) (-3F„_2, -Fn_h, Ln_2, 3Fn_1). 

First, we verify that the above yield the desired solutions: 
( A l ) -2Fn_2 + Fn = -2Fn_2 + 2Fn_2 + Fn_3 = Fn_3; 

Fn-3 + Fn = Fn-\ ~ Fn- 2 + Fn-1 + Fn- 2 = 2Fn- 15 
2Fn-l + Fn = Fn-\ + Fn+l = Ln\ 

Ln + Fn = Fn-l + Fn + Fn +1 = 2Fn + 1 5 
2Fn + l + Fn = ^n + 1 + Fn+2 = ^n + 3 5 

^n + 3 + Fn = Fn + 2 + ^n + 1 + Fn+2 ~ F
n+ 1 = 2 i?n + 2 • Q-E .D. 

(A2) ~Fn-l + Fn = ~Fn-2 ~ Fn + Fn = ~Fn-2'> ~Fn-2 + Fn = Fn-\\ 
Fn-\ + Fn = Fn + ll Fn + 1 + ^n = ^z + 2 5 V̂z + 2 + ^n = Ln + 1* Q-E .D . 

(A3) -4Z/M_i + 5Fn = - 4 L n _ 1 + Ln + 1 + ! , „ _ ! = Ln + L n _ x - 3 L n _ x 

= ^ n _ i + ^ n - 2 ~ 2 L n _ 1 = ^ n - 2 ~ Fn-\ = ~^n-3» 
- L n _ 3 + 5Fn = - Z / n _ 3 + Ln + 1 + Ln_l = -Ln _ x + L n _ 2 + £ n + 2 L „ _ 1 

= ^ n - 2 + ^ n - 1 + Fn = 2 L n ; 
2Ln + 5Fn = 2Ln + Ln_]_ + Ln + i = Ln + L „ _ i + L„ + Ln + 1 

= - ^ + 1 + Fn + 2 = ^« + 3» 
^n + 3 + 5Fn = -̂ n + 3 + Fn-\ + Ln + I = Ln + 2 + Ln + l + Ln + l ~ Ln + Ln + \ 

= L„+ i + L n + 3Ln + 1 - Ln = 4L„ + 1 . Q . E . D . 

(A4) ( i ) 3Fn + 1 + F n = 2 F n + 1 + Fn + 2 = Fn+1 + Fn + 3 = ^^ + 2» 
^n + 2 + ^n = ^ + 3 + Fn + 1 + ^n = Fn+3 + Fn + 2 = ^ + 4 5 
Fn + l, + Fn = 2Fn + 2 + F n + i + Fn + 2 - Fn+l = 3Fn + z . Q . E . D . 

( i i ) -3Ln_l + 5Fn= - 3 L n _ 1 + L„ + 1 + / / „ _ ] _ = Ln -\- Ln_l - 2Ln_l 
= ^̂ 2 ~ Fn^i = Ln-2; 

Fn-2 + 5Fn = ^ n - 2 + Fn-1 + ^n+1 = ^n + ^n+1 = ^n+25 
^n+2 + 5Fn = ^n + 1 + Ln + ^n + 1 + ^̂ 2 - 1 = ?>Fn+I- Q-E .D. 

( i i i ) - 3 F „ _ 2 + F„ = - 3 ^ _ 3 - 3 F „ _ 4 + 2Fn_2 + Fn„3 

= 2Fn_2 - 2Fn_3 - 3Fn-i+ = -£'„-!+; 
-F„_u + FM 
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Ln_2 + Fn = Fn_3 + Fn_Y + Fn = Fn_Y - Fn_2 + Fn^ + F.n.x + Fn_2 
= 3Fn_!. Q.E.D. 

Although not required, it is informative to show how the preceding progres-
sions were discovered. We illustrate the method for part (Al) of the problem. 
First, we note that the value 2 can be assumed only by the following seven 
admissible terms: (F_3, -2F_2, IF„Y , LQ, 2Fls 2F2, F3). If we suppose that 
these are special cases of the desired terms, not necessarily in proper order, 
we surmise that the general terms of the desired solution may be formed by 
adding n to each suffix of the preceding list. If so, the asymptotic values of 
such terms are as follows, again, not necessarily in proper order: 

an5-112 • (a"3, -2a"2, 2a"1, 51/2 , 2a, 2a2, a 3). 

The terms in parentheses may be crudely approximated as follows: (.24, -.76, 
1.24, 2.24, 3.24, 5.24, 4.24). We now rearrange these last terms in ascending 
order of magnitude: (-.76, .24, 1.24, 2.24, 3.24, 4.24, 5.24), and note that 
all the terms are indeed in A.P. We now write down the terms of the first list 
corresponding to these last terms, as follows: (-2F_2, F_3, 2F_1, LQ, 2F1, F3, 
2F2) . Finally, we add n to each suffix in this last septet, thereby forming 
the candidate for the desired general solution; as we have verified, this 
indeed generates the correct solution. 

A similar process yields the solutions of the other parts of the problem, 
though in parts (A3) and (A4) the process is complicated by the fact that the 
choice of terms forming an A.P. is not unique; moreover, in (A4) , a pair of 
"red herrings" occur, which cannot be used to form an A.P., but these are 
readily identifiable as such and may quickly be eliminated from consideration. 

(B) The appropriate generalization is readily obtained by using the general-
ized Fibonacci and Lucas numbers defined as follows, for arbitrary constants v 
and s: 

Un = vFn + sFn_i, Vn = vLn + sLn_l9 for all integers n. 

It is easy to see that the Un' s and Vn
! s satisfy the Fibonacci recurrence, but 

have different initial values, in general. From this, we see that the desired 
generalization is obtained by replacing F by U and L by V in (A1)-(A4); the 
differences in each A.P. will then be an appropriate multiple (either 1 or 5) 
of Un, rather than of Fn . We illustrate only with case (A4)(i): 

(3£/n + i , Vn + 29 Un + ii, 3Un + 2) 
= (3(rFn+l + sFn), (rLn+2 + sLn + l), (vFn + h + sFn + 3) , 3(rFn + 2 + sFn + l)) 
= H3Fn + l9 Ln + 2, Fn + h, 3Fn + 2) + s(3Fn, Ln + l , Fn+3, 3Fn + l) ; 

from ( A 4 ) ( i ) , each quad rup l e t i n p a r e n t h e s e s i s i n A . P . , wi th common d i f f e r e n c e 
Fn and F n _ l s r e s p e c t i v e l y . Due to l i n e a r i t y , the g e n e r a l terms a r e a l s o in 
A . P . , w i th common d i f f e r e n c e = vFn + sFn _ x = Un. Q.E.D. 

Also solved by L. Kuipers and the proposer. 

A Golden Resul t 

H-423 Proposed by Stanley Rabinowitz, Littleton, MA 
(Vol. 26, no. 3, August 1988) 

Prove t h a t each roo t of the equa t ion 
j? Tn . JP Tn-1 . j? rn-2 ± , , , ± p r + F = 0 
nnx ^ rn+lX ^ rn + 2X ^ ^ f Zn-lX T r In U 

has an a b s o l u t e va lue near <j), the golden r a t i o . 

Solution by Tad White, University of California, Los Angeles, CA 
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Problem: Show that the zeros of the polynomial Fnzn + ••• + F2 n l i e near the 
c i r c l e \z\ = a, where a i s a posi t ive root of z2- - z - 1 = 0. 
Solution: F i rs t divide through by Fn to obtain a monic polynomial; we wi l l 
examine the roots of 

fn (z) = zn + —— zn L + . . . + — . 

The following lemma gives us information about the coefficients of fn . 

Lemma 1: If 3 is the negative root of z2 - z - 1 = 0, then 
Fn + k 

Fy, 

\F 
, for all n, k. 

Then L 

Since 

1/1 = 
emma 1 

ifn ~ 

| e | < i 

gn(z) 

E K 
k= 0 

1 i f 

says that 

3n\ S 

, this 
sn + l 

2 

n 

says 

- ar 

_ ry 

f(3) 

£ n 

ifn 
: + l 

5 

F„ 
Proof: Using Binetfs formula for Fn, we can write 

S$(Fn + k ~ ^ a k ) == ^n + k ~ 3n + fe) - o^(an - 3") = 3n(3fe - ak) = -/53ni^; 

dividing by v5Fn and taking absolute values completes the proof. • 

If we define gn(z) = zn + azn~l + ••• + an, then Lemma 1 tells us that the 
coefficients of fn and gn axe close. To make this precise, we can define a 
norm on the vector space Pn of complex polynomials of degree < n via 

n n 
= £ afe2

fe. 
k= o 

sn!n±2 < 3 B „ _ 
Fn 

gn\ -> 0 as n -> «>. Note also that 

so the roots of gn lie on the circle \z\ = a. Hence, we need only show that 
the locations of the zeros of a polynomial vary in some sense continuously with 
the coefficients. This can be made precise via the following lemma. 

Lemma 2: Given a sufficiently small e > 0 and fi e Pn , there exists 6 > 0 such 
that if /o ^s a n element of Pn with ||/Q ~ /l II < <$» there exists a one-to-one 
correspondence between the roots £ • of /Q an^ t n e roots n^ of /]_ such that 
\^i " ̂ i I < e f ° r eacn ^ °  
Proof; Let ft = (1 - t)/ 0 + £/i f o r 0 < £ < 1; note that ft e Pn for each t. 
Since the set of zeros of f^ is discrete, and since e is small, /]_ does not 
vanish in the closed punctured ball of radius e around n^. Observe that the 
evaluation maps ez i Pn -* (C, given by ez(f) = f(z) are continuous with respect 
to the norm || • || , and In fact uniformly continuous if we restrict z to the 
compact set \z\ < 2 (which contains all of the roots n^ in its interior). There-
fore, we can choose 6 such that ||/*o~/lll < & implies that fQ does not vanish on 
dB(r)i, e) , where B(T\^5 e) is the closed ball of radius e at n^. Since ||/0 ~ fl II 
is a monotonic function of t, we have that no ft vanishes on 8S(n^, e). 

Assume further that e is small enough that the paths 85(n^,e) are disjoint; 
then define the functions 

(please turn to page 282) 

ft' (*> 
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