SOME SEQUENCES OF LARGE INTEGERS

Henry Ibstedt

ö. Förstadsgatan 10 b, 21131 Malmö, Sweden
(Submitted June 1988)

1. Introduction

One of the many interesting problems posed in the book Unsolved Problems in Number Theory [1] concerns the sequence

$$
n x_{n}=x_{n-1}^{m}\left(x_{n-1}+n-1\right), x_{1} \in N .
$$

It was introduced by Fritz Göbel and has been studied by Lenstra [1] for $m=1$ and $x_{1}=2$. Lenstra states that x_{n} is an integer for all $n \leq 42$, but x_{43} is not. For $m=2$ and $x_{1}=2$, David Boyd and Alf van der Poorten state that for $n \leq 88$ the only possible denominators in x_{n} are products of powers of $2,3,5$, and 7. Why do these denominators cause a problem? Is it possible to find even longer sequences of integers by choosing different values of x_{1} and m ? These questions were posed by M. Mudge [2].

The terms in these sequences grow fast. For $m=1, x_{1}=2$, the first ten terms are:

3, 5, 10, 28, 154, 3520, 15518880, 267593772160, 160642690122633501504.
If the number of digits in x_{n} is denoted $N(n)$, then $N(11)=43, N(12)=85$, $N(13)=168, N(14)=334, N(15)=667, N(16)=1332$, and $N(17)=2661$. The last integer in this sequence, x_{42}, has approximately 89288343500 digits.

The purpose of this study is to find a method of determining the number of integers in the sequence and apply the method for the parameters $1 \leq m \leq 10$ and $2 \leq x_{1} \leq 11$. In particular, the problem of Boyd and van der Poorten will be solved. Some explanations will be given to why some of these sequences are so long. It will be observed and explained why the integer sequences are in general longer for even than for odd values of m.

2. Method

For given values of x_{1} and m consider the equation

$$
\begin{equation*}
k x_{k}=x_{k-1}\left(x_{k-1}^{m}+k-1\right) \tag{1}
\end{equation*}
$$

where the prime factorization of k is given by

$$
\begin{equation*}
k=\prod_{i=1}^{l} p_{i}^{n_{i}} . \tag{2}
\end{equation*}
$$

Let us assume that x_{k-1} is an integer and expand x_{k-1} and $x_{k-1}^{m}+k-1$ in a number system with $G_{i}=p_{i}^{t_{i}},\left(t_{i}>n_{i}\right)$ as base.

$$
\begin{equation*}
x_{k-1}=\sum_{j} \alpha_{j} G_{i}^{j} \quad\left(0 \leq \alpha_{i}<G_{i}\right) \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{k-1}^{m}+k-1=\sum_{j} b_{j} G_{i}^{j} \quad\left(0 \leq b_{j}<G_{i}\right) . \tag{3b}
\end{equation*}
$$

Since $x_{k-1} \neq 0$, it is always possible to choose t_{i} so that $\alpha_{0} \neq 0$ and $b_{0} \neq 0$. With this t_{i} we have

$$
\begin{equation*}
x_{k-1}\left(x_{k-1}^{m}+k-1\right)=\sum_{j, \ell} \alpha_{j} b_{\ell} G_{i}^{j+\ell} \equiv a_{0} b_{0}\left(\bmod G_{i}\right) . \tag{4}
\end{equation*}
$$

The congruence

$$
\begin{equation*}
k x_{k} \equiv \alpha_{0} b_{0}\left(\bmod G_{i}\right) \tag{5}
\end{equation*}
$$

is soluble iff $\left(k, G_{i}\right) \mid a_{0} b_{0}$, or, in this case, iff $p_{i}^{n_{i}} \mid \alpha_{0} b_{0}$. But, if $p_{i}^{n_{i}} \mid \alpha_{0} b_{0}$, then by (4) we also have

$$
p_{i}^{n_{i}} \mid x_{k-1}\left(x_{k-1}^{m}+k-1\right)
$$

Furthermore, if (5) is soluble for all expansions originating from (2), then it follows that

$$
k \mid x_{k-1}\left(x_{k-1}^{m}+k-1\right)
$$

and, consequently, that x_{k} is an integer. The solution $x_{k}\left(\bmod G_{i}\right)$ to $k x_{k} \equiv$ $a_{0} b_{0}\left(\bmod G_{i}\right)$ is equal to the first term in the expansion of x_{k} using the equivalent of (3a). The previous procedure is repeated using (3b), (4), and (5) to examine if $x_{k+1}\left(\bmod G_{i}\right)$ is an integer.

From the computational point of view, the testing is done up to a certain pre-set limit $k=k_{\max }$ for consecutive primes $p=2,3,5,7, \ldots$ to $p \leq k_{\max }$. One of three things will happen:

1. All congruences are soluble modulus G_{i} for $k \leq k_{\max }$ for all $p_{i} \leq k_{\max }$.
2. $a_{0} b_{0}=0$ for a certain set of values $k \leq k_{\max }, p_{i} \leq k_{\max }$.
3. The congruence $k x_{k} \equiv \alpha_{0} b_{0}\left(\bmod G_{i}\right)$ is soluble for all $k<n \leq k_{\max }$, but not soluble for $k=n$ and $p=p_{i}$.
In cases 1 and 2 increase $k_{\max }$, respectively, t_{i} in $G_{i}=p_{i}^{t_{i}}$ (if computer facilities permit) and recalculate. In case $3, x_{n}$ is not an integer, viz. n has been found so that x_{k} is an integer for $k<n$ but not for $k=n$.

3. Results

The results from using this method in the 100 cases $1 \leq m \leq 10,2 \leq x_{1} \leq 11$ are shown in Table 1. In particular, it shows that the integer sequence holds up to $n=88$ for $m=2, x_{1}=2$ which corresponds to the problem of Boyd and van der Poorten. The longest sequence of integers was found for $x_{1}=11, m=2$. For these parameters, the 600 first terms are integers, but x_{601} is not. In the 100 cases studied, only 32 different primes occur in the terminating values n. In 7 cases, the integer sequences are broken by values of n which are not primes. In 6 of these, the value of n is 2 times a prime which had terminated other sequences. For $x_{1}=3, m=10$, the sequence is terminated by $n=2 * 13^{2}$. The prime 239 is involved in terminating 10 of the 100 sequences studied. It occurs 3 times for $m=6$ and 7 times for $m=10$. It is seen from the table that integer sequences are in general longer for even than for odd values of m.

TABLE 1. x_{n} is the first noninteger term in the sequence defined by $n x_{n}=x_{n-1}\left(x_{n-1}^{m}+n-1\right)$. The table gives n for parameters x_{1} and m.

m	$x_{1}=2$	$x_{1}=3$	$x_{1}=4$	$x_{1}=5$	$x_{1}=6$	$x_{1}=7$	$x_{1}=8$	$x_{1}=9$	$x_{1}=10$	$x_{1}=11$
1	43	7	17	34	17	17	51	17	7	34
2	89	89	89	89	31	151	79	89	79	601
3	97	17	23	97	149	13	13	83	23	13
4	214	43	139	107	269	107	214	139	251	107
5	19	83	13	19	13	37	13	37	347	19
6	239	191	359	419	127	127	239	191	239	461
7	37	7	23	37	23	37	17	23	7	37
8	79	127	158	79	103	103	163	103	163	79
9	83	31	41	83	71	83	71	23	41	31
10	239	338	139	137	239	239	239	239	239	389

4. A Model To Explain Some Features of the Sequence

The congruence

$$
x(k) \equiv \alpha(k)(\bmod p), \alpha(k) \in\{-1,0,1, \ldots, p-2\}
$$

studied in a number system with a sufficiently large base p^{t}, is of particular interest when looking at the integer properties of the sequence. Five cases will be studied. These are:

1. $\alpha(k)$ does not belong to cases $2,3,4$, or 5 below
2. $\alpha(k)=-1, p \neq 2$
3. $\alpha(k)=0$
4. $\alpha(k)=1$
5. $\alpha(k)=\alpha(k+1)$ and/or $\alpha(k)=\alpha(k-1), \alpha(k) \neq-1,0,1$

These cases are mutually exclusive; however, in case 5 there may be more than one sequence of the described type for a given p, for example, for $m=10, x_{1}=$ 7 , and $p=11$, we have $\alpha(k)=7$ for $k=1,2, \ldots, 10$ and $\alpha(k)=4$ for $k=11$, $12, \ldots, 15$. Therefore, when running through the values of k for a given p, it is possible to classify $\alpha(k)$ into states corresponding to cases $1,2,3,4$ or into one of several possible states corresponding to case 5 . In this model, $\alpha(1)$ appears as a result of creation rather than transition from one state to another but, formally, it will be considered as resulting from transition from a state $0(k=0)$ to the state corresponding to $\alpha(1)$.

The study of transitions from one state to another in the above model is useful in explaining why there are such long sequences of integers and why they are in general longer for even than for odd m. Table 2 shows the number of transitions of each kind in the 100 cases studied. Let α_{r} be the number of transitions from state r to state s :

$$
A_{r}=\sum_{r} a_{r s}, B_{s}=\sum_{s} a_{r s}, Q_{s}=100 A_{s} / B_{s} .
$$

(Note that r and s refer to states not rows and columns in Table 2.) The transitions for odd and even values of m are treated separately. It is seen that transitions from states 4, 5, and 2 (for even m) are rare. Only between 5% and 14% of all such states "created" are "destroyed," while the corresponding percentage for other transitions range between 85% and 99%. It is the fact that transitions from certain states are rare, which makes some of these integer sequences so long. That transitions from state 2 are rare for even m (11\%) and frequent for odd m (99\%) make the integer sequences in general longer for even than for odd m. In all the many transitions observed, it was noted that certain types (underscored in Table 2) only occurred for values of k divisible by p, while other types never occurred for k divisible by p. Transitions from state 3 all occur for k divisible by p but, unlike the other transitions which occur for k divisible by p, they have a high frequency. Some of the observations made on the model are explained in the remainder of this paper.

TABLE 2. The number of transitions of each type for odd and even m

From state	To state 1		To state 2		To state 3		To state 4		To state 5		A_{r}	
	21 m											
0	467	1847	38	40	60	60	55	55	32	69	652	2071
1			220	701	252	791	247	642	75	307	794	2241
2	181	55			71	21	39	7	2	0	293	83
3	$\underline{202}$	$6 \overline{34}$	36	30			111	80	$\underline{9}$	16	358	760
4	20	35	$\frac{2}{2}$	6	39	12				$\underline{3}$	61	56
5	$\underline{2}$	$\underline{2}$	$\underline{1}$	$\underline{2}$	0	$\underline{3}$	0	$\underline{2}$	$\underline{2}$	11	5	20
B_{s}	872	2573	297	779	422	887	452	786	120	406	2163	5431
$Q_{s} \%$	92	95	99	11	85	86	14	8	5	5		

Transitions from state 4 and, for even m only, from state 2
It is evident from $k x_{k}=x_{k-1}\left(x_{k-1}^{m}+k-1\right)$ that, if $x_{k-1} \equiv \pm 1(\bmod p)$ and $(k, p)=1$, then $x_{k}= \pm 1(\bmod p)$. Assume that we arrive at $x_{k-1} \equiv \pm 1(\bmod p)$ for $k<p-m$ and $m<p$. We can then write

$$
\begin{equation*}
x_{p-m-1} \equiv \pm 1+\alpha p\left(\bmod p^{2}\right), 0 \leq \alpha<p \tag{6}
\end{equation*}
$$

and
(7)

$$
x_{p-m-1}^{m} \equiv(\pm 1+\alpha p)^{m} \equiv 1 \pm m \alpha p\left(\bmod p^{2}\right) \quad(m \text { even }) .
$$

Equations (6) and (7) give

$$
(p-m) x_{p-m} \equiv \pm(p-m)\left(\bmod p^{2}\right)
$$

or, since $(p-m, p)=1$,

$$
x_{p-m} \equiv \pm 1\left(\bmod p^{2}\right) \text { or } x_{k} \equiv \pm 1\left(\bmod p^{2}\right) \text { for } p-m \leq k \leq p-1
$$

For $k=p$, we have

$$
p x_{p} \equiv \pm 1(1+p-1)\left(\bmod p^{2}\right)
$$

or, after division by p throughout

$$
x_{p} \equiv \pm 1(\bmod p)
$$

It is now easy to see that $x_{k} \equiv 1(\bmod p)$ continues to hold also for $k>p$. The integer sequence may, however, be broken for $k=p^{2}$.
Transitions from state 3
Let us assume that $x_{j} \equiv 0(\bmod p)$ for some $j<p$. If $(j+1, p)=1$, it follows that $x_{j+1} \equiv 0(\bmod p)$ or, generally, $x_{k} \equiv 0(\bmod p)$ for $j \leq k \leq p-1$. For $k=p-1$, we can write $x_{p-1} \equiv p a\left(\bmod p^{2}\right), 0 \leq \alpha<p-1$. We then have
$p x_{p} \equiv p \alpha\left(p^{m} \alpha^{m}+p-1\right)\left(\bmod p^{2}\right)$,
from which follows $x_{p} \equiv-\alpha(\bmod p)$, viz. x_{p} is an integer; however, if $a \nmid 0$, the state is changed.
Transitions from states of type 5
When, for some $j<p-1$, it happens that $x_{j}^{m} \equiv 1(\bmod p)$, it is easily seen that $x_{k} \equiv x_{j}(\bmod p)$ for $j \leq k<p$. This implies

$$
p x_{p} \equiv x_{j}(1+p-1) \quad(\bmod p)
$$

from which it is seen that x_{p} may not be congruent to $x_{j}(\bmod p)$ but also that x_{p} is an integer.

References

1. R. K. Guy. Unsolved Problems in Number Theory. New York: Springer-Verlag, 1981, p. 120.
2. Personal Computer Worla, December 1987, p. 213.

$* * * * *$

