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1. Introduction 

Using Lagrange inversions one obtains the formal power series (fps) expan-
sions (cf. Riordan [12], See* 4.5) 

(1.1) exp bz = 2^ r: w > 
k=Q * l 

(1-2) ^ •£)<"* + *>'„*, 
1 - az k=0 kl 

where w = z • exp(-~as)s and 

(i.3) u + *)> - f :_A- (« f e + »ws 
=̂ o ak + b\ k I 

(1.4) IliJili.-f; («* + V* 
1 - ga * = 0 \ k I 

1 + z 
where V = z/(l + s) a . With the help of these identities, Gould [6-8] obtained 
many convolution identities. Higher-dimensional extensions of (1.2) and (1.4) 
were studied and proved by Carlitz [1, 2] using MacMahon*s Master Theorem. 
Finally, Carlitz?s identities were embedded into a general theory by Joni [9]. 
The key for her results, again, is Lagrange inversion (this time the multi-
variable Lagrange-Good inversion formula, cf. Joni [10]). 

In [5] Cohen & Hudson discovered two-variable generalizations of (1.1) and 
(la 2) that are different in nature from the corresponding results of Carlitz, 
and studied related convolution identities, Their proofs are based on a spe-
cific operator method also used in Cohenfs papers [3] and [4]. Thus, the ques-
tion remained open as to whether there might be a Lagrange-type inversion for-
mula providing the background for Cohen & Hudson1s results and yielding two-
variable extensions of (1.3) and (1.4), in addition. This formula will be 
given in Section 3 (Theorem 1, Corollary 2) of this paper. Subsequently, we 
are able to derive all of Cohen & Hudson's results and, moreover, to give the 
"factorial55 analogues that correspond to (1.3) and (1.4). This will be done in 
Section 4. For the purpose of illustration, we list some identities in the 
next section. 

2. Some Expansion and Convolution Identities 

To write our identities, it is convenient to adopt the usual multidimen-
sional notations. Let k = {k\9 k2), n = (n1? n2) e Z2 (pairs of integers) and 
z = (3]_, z2) be a pair of inde terminates, then we define kl = k\ lk2 • ? n > k if 
and only if nx > k\ and n2 ^ k2, n - k = (rii - fci, n2 - k2), 0 = (0, 0), 
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Throughout this paper, for k E Z , A^, y^, a^, 3i ̂  (E (complex numbers), i = 1, 
2, we shall write 

(Ax + y^i)(a2 + 62^2) „ ,7, (*2 + y2^2)(ai + M l ) 
i?x(W = , RAk) = —7 , 
1 ~ A2 + U2^2 Al + M l 

and 
(Ax + mki) (A2 + y2^2> 
(A2 + u2fc2) (*i + M l ) 

for short. Note that v^QC) is equal to R^{k) with 3i = 0 and a^ = 1. 
The first of Cohen & Hudson's identities, (1.3) in [5], is equivalent to 

(2.1) _ _ _ ^ ^ 

For £2
 = 0' (2.1) reduces to (1.2). The factorial analogue of (2.1) we prove 

is 
\±l\i2 z}z2 

(2 2) * " M l (i + M~a + 327 
' _ ] n *1 \ / _ _M2 ^2 

A o l + S i / V A i l + s -

•^("*f)C*f)*i<i + ",""<s,<i + " « > " ' * -
E q u a t i o n ( 2 . 2 ) r e d u c e s t o ( 1 . 4 ) f o r s 2 = 0 . The t f mixed f ! e x p a n s i o n , 

^1^2 %2 

(2 .3 ) — f r / x + £ V , r ^ } ) ^ e x p ( - p 1 ( ^ ) ) ( l + 

Ax 1 + z2) ^ir1"1 
s2)" •2»2(fe) 

is a two-variable generalization of (1.2) and (1.4) at the same time. This is 
seen by setting s2 = 0 or z\ = 0, respectively. 

The second expansion of Cohen & Hudson, (1.5) in [5], is equivalent to 

1 _ 1 rY{k)ki R2(k)k* 7 

(2.4) = Z —L r r,, S~ «p(-ri(k)3i - i?2(fe)a2). 
Ax - y2axs2 ^>g Ax + y ^ /c! ~ 

Setting z2 = 0 in (2.4) gives (1.1); setting sx = 0 gives (1.2). The factorial 
analogue of (2.4) is presented here: 

(2.5) = y —L__^i/«V^a))^(1 + S l ) - * i ( S > ( i + z2yR^\ 
%2 kz0 *1 + M l V * i A ^2 / 

1 + Z2 

This is a generalization of (1.3) and (1.4) at the same time. Similarly, a 
two-dimensional generalization of (1.1) and (1.4) is 

(2.6) -
z2 

Xl - y 2 a x 1 + ^ 2 
k ^ 1 *i(k) R2(k)\ k , n , W 1 _,_ ,-R2(k) 

= £ T—T 1 77~i—I i J5~ exp(-p1(W^1)(l + s2) 2 ~ , 
feTg ̂ 1 + M l kil \ K-2 I ~ 

and a generalization of (1.2) and (1.3) is 
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(2.7) l- E , +
l
 v f f f l ) ^ ' ^ + ai>-"<sW-s2(*)*2). 

We give another expansion, which Cohen & Hudson missed: 

_ v v (al^l ~ 3i^i)(a2P2 " B2^2> 

(2.8) i = y — — — — — ^ — • 

• z^ exp(-Rl(k)z1 - R2{k)z2). 

This is a two-variable generalization of (1.1). The corresponding generaliza-
tion of (1.3) reads 

(aiUl ~ gi-X1)(a2U2 ~ ^ 2 ) 

(2 9) ! = Y l 2 X 2 ( a i + 3 l ^ l ) ( a 2 + ®lkz) (^(k)\(RAk)\ 
j^q (Ax + y 1 / c 1 ) ( A 2 + U 2 ^2 ) \ k{ ) \ k2 ) 

• 3*(1 + Z l ) - ^ ( ^ ( 1 + ^ K ^ , 
that of (1.1) and (1.3) , 

(am! - $i\i)(a2\i2 - $2\2) 
A l A 2 " k ^ ~ ^ + g^ i ) ( a 2 + 32^2) Rl(Mkl (R2(k)\ 

ikq (Xl + Mlkl)(X2 + M2k2) kY\ \ k2) ° 

• g* exp(-i?1(7c)s1)(l + z2rR*<® . 

Identities (2.1)-(2.10) will be proved in Section 4 by establishing three types 
of general expansions that underly (2.1)-(2.3), (2.4)-(2.7), and (2.8)-(2.10), 
respectively. 

From each of the expansions (2.l)-(2.10), we may derive a convolution iden-
tity which generalizes Jensen's convolution or the Abel-type Jensen-Gould con-
volution identity, respectively (cf. [6], [7]). We shall give two examples; 
the remaining identities are obtained similarly. 

Multiplying both sides of (2.1) with exp(sx^i + s2z2) and comparing coef-
ficients of z~, we obtain (1.4) of [5]. 

(2.u) f2_ E M1_ll + ̂ L_ y I^y2_L2 l_ 
n2!J-i^0Vx2/ («i-Ji)! « i ! ^ 0 U l / ( n 2 - j 2 ) ! nl 

_ T r^kfi rz(k)k> (-r^k) + Sl)"'-fel-(-r2(fe) + e2)"^z 

"kTo ?S! (2 " £>! 

The factorial analogue of (2.11), deduced by multiplying both sides of 
(2.2) with (1 + Si)131 (1 + 22)S2 and comparing coefficients of z~ reads 

"•'M^iftf!: £) + (;;),£„(£)*(:*: £) - (§) 
V /̂ l C^)\ /^2C^)\ /~̂ i (̂ ) + S i W - ^ W + s2\ 
^ ^r A 2̂ /\ n{- kY ) \ n2- k2 ) ' 

3. Lagrange Inversion 

Let 

<Kg) = (*i(si, s2), (j)2(̂ l»
 zl)) 

be some pair of fps in z\ and s2 with cj).(0, 0) * 0, i = 1, 2. Let 
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f(z) = (zl/^>l(z), z2/$2(z)). 
The (two-variable) Lagrange-Good formula solves the problem of expanding a 
formal Laurent series g(z) of the form 

(3.1) g{z) = Y,g;Z*~> 

for some m € Z 2 , in terms of powers of f(z); namely, if 

g(z) X cvfhz), 
then 

keZ2 

ck = <z"~>g(z)A(z)f-Hz), -k, 

where <z~>a(z) denotes the coefficient of z~ in a(z) , and 

A(g) = — (z)$i {z)$2(z) with — (s) the Jacobian of f(z). 

For formal Laurent series of the form (3.1), we shall use the abbreviation fLs. 
The general two-dimensional Lagrange inversion problem can be formulated as 

follows: Let F = (/^(g)), 2 be a "diagonal sequence," i.e., ffc(z) is ° f t n e 

form ~ 

/*(*) = E/„***. 
n > A: — 

Then, for a given sequence F, one tries to find some sequence F = (f]{(z))j<eZ2 
such that expanding an arbitrary fLs g(z) in terms of F, 

(3.2a) ?(g) = £ cfe/ (3), 
feeZ2 ~ ~ 

the coefficients e^ are given by 

(3.2b) ^ = <s2><7(s) • A ( a ) . 

Obviously, the sequence F is uniquely determined by 

(3.3) <gS>^(5) . / 2 ( H ) = fi25, 

where 6nk is the Kronecker delta. In this paper, we shall solve this Lagrange 
inversion problem for 

(3.4) fk(z) = gSft (zlfi^f2(z2)R2(k) y 

where fi(t), f2(t) are fps in the single variable t with /V. (0) * 0, i = 1, 2. 
Evidently, F = (f]<(z))kezz is a diagonal sequence. 

Theorem 1: Let F = ( ^ ( 2 ) ) K z 2 be as defined in (3.4). The sequence 

uniquely determined by (3.3), is given by 
(3.5) £ (3) = PiU 1̂ 2 

~ V~' (Ai + m^i)(A2 + \i2k2) 
where W is the operator 

(3.6) 

with 

W = det 

z1D1 + 
32 
U2 

A2 F,(2l) 

^ 1 " — Ai)^2(^2) #2^2 + 

^2 
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V*;> = *i i^-.^i^fi^i^ i = i, 2-

D^ stands for the differential operator with respect to z^. Equivalently, 

( a2 + 32^2 \ / al + 3i^i \ 

(ami - 3iA1)(a2u2
 _ $2^2) 

(3.7) / k( 2) = 

(Xl + y^i)(X2 + U2^2) 
F1(g1)F2(22) AC*)'1-

Proof: The proof is based on the method for treating Lagrange inversion 
problems introduced by the author [11]. For i = 1, 2, apply (z-D. + (X^/u-)) 
on both sides of (3.4) to get 

(3.8) (*.Z>. +^)/s(g) 
3 3 - ^ 

A, + \in-k y3. ^3-i\ 

^3-i A3-i + V3-ik3-il 
fk^--

i = 1, 2. 

Writing <5^(/c) = (X^ + u^fe^) 1 ? ̂  = 1» 2, simple manipulations show that the 
system (3.8) of two equations is equivalent to the system 

(3.9) ^ ( g ) = ̂ ( ? 0 ^ ( g ) 5 i = 1, 2, 

^here 

U3- U3-

and 

(3.10) V = det 

(a3-i 

si^i + 

U3_ 

Ul 

3 " V i k ( o ^ - i - + ^ ^ \U3-i U, 

/ $2 \ 
(a2 - - A 2 ) F l ( S l ) 

F3_v(S3-v) 

/ 3i x ZoDo + 
^2 

Now Theorem 1 of [11] with A = (D, Afx = Af2 = set of fLs, £7̂ , V, oi(k) as above, 
may be applied. The bilinear form we need is defined by 

(3.11) (a(z), b(z)) = <z$>a(z)b(z)9 

for fLs a(z) and M < 0 . Thus, by (4.4) of [11], the dual system 

(3.12) Up^z) = c^mWh^z), i = 1, 2, 

[note that F* = J/ as defined in (3.6), since (z^D^)* = -s^Z^] has to be solved 
first. It is a simple matter of fact that (3.12), the dual of (3.9), is equi-
valent to the dual of (3.8), which reads 

Xi + Mik — + ( x . + u ^ ) ! ^ + 

P3-i, 
a 3 - i - ^ - ^ 3 - , 

A3-i + ̂ 3-ifc3-- Fi<*i> 
.(*), 

i = 1, 2. 

A solution of this system of equations is seen to be h-^iz) = f^(z)~^9 hence, by 
(4.6) of [11], respecting V* = W, ~ 
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Ul^2 

*(5) = ( x 1 + u l f c l ) ( x 2 + M2) m^' 
which establishes (3.5). A little bit of calculation from (3.5) leads to 
(3.7). D 

Corollary 2 (Lagrange formula): Let F = (f]i(z))kez2
 b e a s defined in (3.4). The 

coefficients in the expansion 

(3.13) g(z) = X okfk{z) 
kez2 ~ ~ 

are given by 

(3.14) ok = <z^>g(z)fk(z)9 

with j\ (<0 of (3.7), or 

M^2 
(3.15) cj, = (Ax + m^i) (A2 + ]i2̂ 2) 

<59>/k(g)"1^(2)-

Proof: Equation (3.14) is merely (3.2) for fk(z) of (3.4), (3.15) is based on 
(3.14), (3.5), and W* = 7. U 

As a first application, we shall prove (1.7) of Cohen & Hudson [5]. Take 
fl(£) = flW = exP ̂> which implies Fl(t) = F2(t) = t. Let 

9W = TV" E 
a l - — Al)la2 ^2 

A9ISiS 2*1*2 

^1^2 j = 0 (Ai/yx + l)j (A2/y2 + 1) 

where (a)j = a(a + 1) ... (a + J - 1). For this choice of fi(t) [V depends on 
Fi(t)\], g{z) satisfiesVg([z) = l/uiy2. Utilizing the Lagrange formula (3.15), 
from this fact we obtain 

(3.16) 
1 (ai 'V^k 

32. 
a 2 -—X2)zlz2 

A X A 2 j = o 

= £ Ul+Hlkl)-"1 (A2 + u2fe2r1-1 ~ y^2 ~ (-g)^exp(i?1(/c)g1+i?2(/c)g2). 
fc> o 

(Ai/ui + l)j(A2/u2 + Dj 

\ ̂  i ̂ . z' 7» ̂  k 

Equation (3.16) is another two-variable extension of (1.1) (set z2 = 0). 

4. Coefficient Formulas for Some Special Expansions 

The following technical lemma turns out to be useful for further computa-
tions. 

Lemma 3: Let h(t) be an fLs in t . With the assumptions of Theorem 1, 

(4.1) <g5>/zU3-i)^(2i)/s(5)-1 

= - — — -<z->h(z3^i)f, (z) S for ̂  = 1 , 2. 
(A- + yifei)(a3_i.+ B3-^3-i) * ~ 

Proof: Without loss of generality we prove (4.1) for i = 1. We start with the 
identity 

<z^>h(z2)[l + \il 
i2 + 3 2 ^2 

M*i> /*(*> ^ \ r ' r i A 2 + U2 /C2 ^i-i^v 

- < g ^ / 2 ( 2 2 ) S 2 ^ / 2 ( ^ ) " / ? 2 ( ~ ) / i ( ^ i ) " A l ( a 2 + e 2 " 2 ) / ( A 2 + y 2 - 2 ) 
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Because of ( a ^ ) * =_ - s ^ [with respect to the b i l i n e a r form of (3.11)] the 
right-hand side of t h i s equation i s equal to 

Together with a b i t of manipulation, we f ina l l y a r r ive a t (4 .1 ) . Q 

Corollary 4: Let fk(z) be given by (3 .4 ) . Then 

( a ^ i - 3iX1)(a2y2 " 32X2) 
X 1 X 0 - ACiACp ; : — — — 

(4-2) l \ ? 2 (x1 + u l f e l ) ( x 2 + p2?c2) Ws>' 
where d^ = <g~>//c(g)_1. 

Proof: By (3.14) we have to compute 

Using the form (3.7) of fk(z), repeated application of (4.1) gives 

<32>f (g) = <S2> 1 fel W, ^ 
Xl + TJ1fc1/\ A2 + U2^2 

(axux - 3iAx) (a2U2 " $2^2) ^1^2 

(04 + 3i/Ci)(a2 + 32^2) U l + liifei)(X2 + U2fc2). 

(alUi - 3iX1)(a2U2 ~ ^2^2) 

fkW - 1 

X\Xz " ^ 1 ^ 2 
I I V n - t - l-S n Pf n I I [ V /^ - t - r s /-> K- /-. I (04 + 3i^i) (a2 + 32k2) ^ 0 

(Xx + u1/c1)(X2 + u2fc2) 

tfhich furnishes (4.2). D 

For f^iZi) = exp(-s^) and f^iz^ = (1 + s^)-1, respectively, the expansions 
(2.8) and (2.9) are obtained as special cases of (4.2). The mixed analogue 
(2.10) is (4.2) with fi(zi) = exp(-s1) and f1{z1) = (1 + s 2 ) _ 1 . 

Quite analogously, we prove 

Corollary 5: If fk (g) = z}fl{zlfl^)f1{z2)R^\ then 

(4.3) — — \ r , = £ Ul + n^i)~ldkfk(z), 
Xl + u2axF2(s2) ^>o ~ ~ 

where dk - (z~>fk(z)~l* 

Sketch of Proof: Again using (3 .14) , ( 3 . 7 ) , and (4.1) we proceed along the 
l ines of the proof of the preceding coro l l a ry . Q 

The expansions (2 .4 ) - (2 .7 ) are spec ia l cases of ( 4 . 3 ) . F ina l ly , we have 

Corollary 6: If ^ ( 3 ) = z}fY ( z ^ 1 ^ f1{z1)Tl^) , then 

U1U2 
1 - Y Y Fl(zl)F2(zz) 

(4.4) — — — = T,dkfk{z), 

where dk = <z ~>j\ (z)~ * . 
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Proof: Observe that the left-hand side of (4.4) is equal to 

l/(l + ̂  ^1(^1)) + l/(l + ~ F2{z2)^ - 1. 

This in hand, the method used to prove Corollary 4 can be used again to settle 
(4.4). D 

Equations (2.1)-(2.3) are special cases of (4.4). 
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