A TWO-VARIABLE LAGRANGE-TYPE INVERSION FORMULA WITH APPLICATIONS TO EXPANSION AND CONVOLUTION IDENTITIES

Christian Krattenthaler
Institut für Mathematik, Universität Wien, Strydkgifgasse 4, A-1090 Vienna, Austria
(Submitted June 1988)

1. Introduction

Using Lagrange inversion, one obtains the formal power series (fps) expansions (cf. Riordan [12], Sec. 4.5)

$$
\begin{align*}
& \exp b z=\sum_{k=0}^{\infty} \frac{b(a k+b)^{k-1}}{k!} w^{k} \tag{1.1}\\
& \frac{\exp b z}{1-\alpha z}=\sum_{k=0}^{\infty} \frac{(a k+b)^{k}}{k!} w^{k} \tag{1.2}
\end{align*}
$$

where $w=z \cdot \exp (-\alpha z)$ s and

$$
\begin{align*}
& (1+z)^{b}=\sum_{k=0}^{\infty} \frac{b}{a k+b}\binom{a k+b}{k} v^{k} \tag{1.3}\\
& \frac{(1+z)^{b}}{1-\frac{a z}{1+z}}=\sum_{k=0}^{\infty}\binom{a k+b}{k} v^{k}
\end{align*}
$$

where $v=z /(1+z)^{a}$. With the help of these identities, Gould [6-8] obtained many convolution identities. Higher-dimensional extensions of (1.2) and (1.4) were studied and proved by Carlitz [1, 2] using MacMahon ${ }^{\text {s }}$ Master Theorem. Finally, Carlitz's identities were embedded into a general theory by Joni [9]. The key for her results, again, is Lagrange inversion (this time the multivariable Lagrange-Good inversion formula, cf. Joni [10]).

In [5] Cohen \& Hudson discovered two-variable generalizations of (1.1) and (1.2) that are different in nature from the corresponding results of Carlitz, and studied related convolution identities. Their proofs are based on a specific operator method also used in Cohen's papers [3] and [4]. Thus, the question remained open as to whether there might be a Lagrange-type inversion formula providing the background for Cohen \& Hudson's results and yielding twovariable extensions of (1.3) and (1.4), in addition. This formula will be given in Section 3 (Theorem 1, Corollary 2) of this paper. Subsequently, we are able to derive all of Cohen \& Hudson's results and, moreover, to give the "factorial" analogues that correspond to (1.3) and (1.4). This will be done in Section 4. For the purpose of illustration, we list some identities in the next section.

2. Some Expansion and Convolution Identities

To write our identities, it is convenient to adopt the usual multidimensional notations. Let $\underset{\sim}{\mathcal{K}}=\left(k_{1}, \mathcal{K}_{2}\right), \underset{\sim}{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$ (pairs of integers) and $\underset{\sim}{\underset{\sim}{A}}=\left(z_{1}, z_{2}\right)$ be a pair off indeterminat̃es, then we define $\underset{\sim}{k}!=k_{1}!k_{2}!, \underset{\sim}{n} \geq \underset{\sim}{k}$ if and only if $n_{1} \geq k_{1}$ and $n_{2} \geq k_{2}, \underset{\sim}{n}-\underset{\sim}{k}=\left(n_{1}-k_{1}, n_{2}-k_{2}^{\sim}\right), \underset{\sim}{0}=(0,0)$,

$$
\underset{\sim}{\underset{\sim}{z}}=z_{1}^{k_{1}} z_{2}^{k_{2}} \quad \text { and } \quad(\underset{\sim}{\underset{\sim}{\tilde{K}}})=\binom{z_{1}}{k_{1}}\binom{z_{2}}{k_{2}} .
$$

Throughout this paper, for $\underset{\sim}{k} \in \mathbb{Z}^{2}, \lambda_{i}, \mu_{i}, \alpha_{i}, \beta_{i} \in \mathbb{C}$ (complex numbers), $i=1$, 2, we shall write

$$
\begin{array}{ll}
R_{1}(\underset{\sim}{k})=\frac{\left(\lambda_{1}+\mu_{1} k_{1}\right)\left(\alpha_{2}+\beta_{2} k_{2}\right)}{\lambda_{2}+\mu_{2} k_{2}}, & R_{2}(\underset{\sim}{k})=\frac{\left(\lambda_{2}+\mu_{2} k_{2}\right)\left(\alpha_{1}+\beta_{1} k_{1}\right)}{\lambda_{1}+\mu_{1} k_{1}}, \\
r_{1}(\underset{\sim}{k})=\frac{\left(\lambda_{1}+\mu_{1} k_{1}\right)}{\left(\lambda_{2}+\mu_{2} k_{2}\right)}, & r_{2}(\underset{\sim}{k})=\frac{\left(\lambda_{2}+\mu_{2} k_{2}\right)}{\left(\lambda_{1}+\mu_{1} k_{1}\right)},
\end{array}
$$

for short. Note that $r_{i}(\underset{\sim}{k})$ is equal to $R_{i}(\underset{\sim}{k})$ with $\beta_{i}=0$ and $\alpha_{i}=1$.
The first of Cohen \& Hudson's identities, (1.3) in [5], is equivalent to

$$
\begin{equation*}
\frac{1-\frac{\mu_{1} \mu_{2}}{\lambda_{1} \lambda_{2}} z_{1} z_{2}}{\left(1-\frac{\mu_{1}}{\lambda_{2}} z_{1}\right)\left(1-\frac{\mu_{2}}{\lambda_{1}} z_{2}\right)}=\sum_{\underset{\sim}{k} \geq 0} \frac{r_{1}(\underset{\sim}{k})^{k_{1}}}{k_{1}!} \frac{r_{2}(\underset{\sim}{k})^{k_{2}}}{k_{2}!}{\underset{\sim}{c}}_{\underset{\sim}{k}}^{k} \exp \left(-r_{1}(\underset{\sim}{k}) z_{1}-r_{2}(\underset{\sim}{k}) z_{2}\right) . \tag{2.1}
\end{equation*}
$$

For $z_{2}=0$, (2.1) reduces to (1.2). The factorial analogue of (2.1) we prove is
(2.2) $\frac{1-\frac{\mu_{1} \mu_{2}}{\lambda_{1} \lambda_{2}} \frac{z_{1} z_{2}}{\left(1+z_{1}\right)\left(1+z_{2}\right)}}{\left(1-\frac{\mu_{1}}{\lambda_{2}} \frac{z_{1}}{1+z_{1}}\right)\left(1-\frac{\mu_{2}}{\lambda_{1}} \frac{z_{2}}{1+z_{2}}\right)}$

$$
=\sum_{\underset{\sim}{k} \geq 0}\binom{r_{1}(\underset{\sim}{k}}{k_{1}^{k}}\binom{r_{2}(\underset{\sim}{k})}{k_{2}} \underset{\sim}{z}\left(1+z_{1}\right)^{-r_{1}(\underset{\sim}{k})}\left(1+z_{2}\right)^{-r_{2}(\underset{\sim}{k})} .
$$

Equation (2.2) reduces to (1.4) for $z_{2}=0$. The "mixed" expansion,

$$
\begin{equation*}
\frac{1-\frac{\mu_{1} \mu_{2}}{\lambda_{1} \lambda_{2}} z_{1} \frac{z_{2}}{1+z_{2}}}{\left(1-\frac{\mu_{1}}{\lambda_{2}} z_{1}\right)\left(1-\frac{\mu_{2}}{\lambda_{1}} \frac{z_{2}}{1+z_{2}}\right)}+\sum_{\underset{\sim}{k} \geq 0} \frac{r_{1}(\underset{\sim}{k})^{k_{1}}}{k_{1}!}\binom{r_{2}(\underset{\sim}{k})}{k_{2}^{k}} z_{\sim}^{k} \exp \left(-r_{1}(\underset{\sim}{k})\right)\left(1+z_{2}\right)^{-r_{2}(\underset{\sim}{k})}, \tag{2.3}
\end{equation*}
$$

is a two-variable generalization of (1.2) and (1.4) at the same time. This is seen by setting $z_{2}=0$ or $z_{1}=0$, respectively.

The second expansion of Cohen $\&$ Hudson, (1.5) in [5], is equivalent to
(2.4) $\frac{1}{\lambda_{1}-\mu_{2} \alpha_{1} z_{2}}=\sum_{\underset{\sim}{k} \geq \underset{\sim}{0}} \frac{1}{\lambda_{1}+\mu_{1} k_{1}} \frac{r_{1}(\underset{\sim}{k})^{k_{1}} R_{2}(\underset{\sim}{k})^{k_{2}}}{\underset{\sim}{k}!} \underset{\sim}{z} \underset{\sim}{k} \exp \left(-x_{1}(\underset{\sim}{k}) z_{1}-R_{2}(\underset{\sim}{k}) z_{2}\right)$.

Setting $z_{2}=0$ in (2.4) gives (1.1); setting $z_{1}=0$ gives (1.2). The factorial analogue of (2.4) is presented here:
(2.5) $\frac{1}{\lambda_{1}-\mu_{2} \alpha_{1} \frac{z_{2}}{1+z_{2}}}=\sum_{\underset{\sim}{k} \geq 0} \frac{1}{\lambda_{1}+\mu_{1} k_{1}}\binom{r_{1}}{{\underset{\sim}{k}}_{1}^{(k)}}\left(\underset{\underset{\sim}{k_{2}}}{R_{2}(\underset{\sim}{k})}\right)_{\sim}^{z} \underset{\sim}{k}\left(1+z_{1}\right)^{-r_{1}(\underset{\sim}{k})}\left(1+z_{2}\right)^{-R_{2}(\underset{\sim}{\sim})}$. This is a generalization of (1.3) and (1.4) at the same time. Similarly, a two-dimensional generalization of (1.1) and (1.4) is

$$
\begin{align*}
& \frac{1}{\lambda_{1}-\mu_{2} \alpha_{1} \frac{z_{2}}{1+z_{2}}} \tag{2.6}\\
& =\sum_{\underset{\sim}{k} \geq{\underset{\sim}{0}} \frac{1}{\lambda_{1}+\mu_{1} k_{1}} \frac{r_{1}(\underset{\sim}{k})^{k_{1}}}{k_{1}!}\left({\underset{\sim}{k}}_{2}^{R_{2}(\underset{\sim}{k})}\right) \underset{\sim}{z} \underset{\sim}{k} \exp \left(-r_{1}(\underset{\sim}{k}) z_{1}\right)\left(1+z_{2}\right)^{-R_{2}(\underset{\sim}{k})},} .
\end{align*}
$$

and a generalization of (1.2) and (1.3) is
(2.7) $\frac{1}{\lambda_{1}-\mu_{2} \alpha_{1} z_{2}}=\sum_{\underset{\sim}{k} \geq{\underset{\sim}{0}}_{0}} \frac{1}{\lambda_{1}+\mu_{1} k_{1}}\left({\underset{\sim}{1}}_{r_{1}(\underset{\sim}{k})}^{k_{1}}\right) \frac{R_{2}(\underset{\sim}{k})^{k_{2}}}{k_{2}!} \underset{\sim}{z}\left(1+z_{1}\right)^{-r_{1}(\underset{\sim}{k})} \exp \left(-R_{2}(\underset{\sim}{k}) z_{2}\right)$.

We give another expansion, which Cohen \& Hudson missed:

$$
\begin{equation*}
1=\sum_{\underset{\sim}{k} \geq 0} \frac{\lambda_{1} \lambda_{2}-k_{1} k_{2} \frac{\left(\alpha_{1} \mu_{1}-\beta_{1} \lambda_{1}\right)\left(\alpha_{2} \mu_{2}-\beta_{2} \lambda_{2}\right)}{\left(\alpha_{1}+\beta_{1} k_{1}\right)\left(\alpha_{2}+\beta_{2} k_{2}\right)}}{\left(\lambda_{1}+\mu_{1} k_{1}\right)\left(\lambda_{2}+\mu_{2} k_{2}\right)} \frac{R_{1}(\underset{\sim}{k})^{k_{1}} R_{2}(\underset{\sim}{k})^{k_{2}}}{\underset{\sim}{k}!} \cdot \tag{2.8}
\end{equation*}
$$

This is a two-variable generalization of (1.1). The corresponding generalization of (1.3) reads

$$
\begin{equation*}
I=\sum_{\underset{\sim}{k} \geq 0} \frac{\lambda_{1} \lambda_{2}-k_{1} k_{2} \frac{\left(\alpha_{1} \mu_{1}-\beta_{1} \lambda_{1}\right)\left(\alpha_{2} \mu_{2}-\beta_{2} \lambda_{2}\right)}{\left(\alpha_{1}+\beta_{1} k_{1}\right)\left(\alpha_{2}+\beta_{2} k_{2}\right)}}{\left(\lambda_{1}+\mu_{1} k_{1}\right)\left(\lambda_{2}+\mu_{2} k_{2}\right)}\binom{R_{1}(\underset{\sim}{k})}{k_{1}}\binom{R_{2}(\underset{\sim}{k})}{k_{2}} . \tag{2.9}
\end{equation*}
$$

that of (1.1) and (1.3),

$$
\cdot \underset{\sim}{\underset{\sim}{z}}\left(1+z_{1}\right)^{-R_{1}(\underset{\sim}{k})}\left(1+z_{2}\right)^{-R_{2}(\underset{\sim}{k})},
$$

Identities (2.1)-(2.10) will be proved in Section 4 by establishing three types of general expansions that underly (2.1)-(2.3), (2.4)-(2.7), and (2.8)-(2.10), respectively.

From each of the expansions (2.1)-(2.10), we may derive a convolution identity which generalizes Jensen's convolution or the Abel-type Jensen-Gould convolution identity, respectively (cf. [6], [7]). We shall give two examples; the remaining identities are obtained similarly.

Multiplying both sides of (2.1) with $\exp \left(s_{1} z_{1}+s_{2} z_{2}\right)$ and comparing coefficients of $\underset{\sim}{\underset{n}{n}}$, we obtain (1.4) of [5].

The factorial analogue of (2.11), deduced by multiplying both sides of (2.2) with $\left(1+z_{1}\right)^{s_{1}}\left(1+z_{2}\right)^{s_{2}}$ and comparing coefficients of $\underset{\sim}{z}$ reads

3. Lagrange Inversion

Let

$$
\phi(z)=\left(\phi_{1}\left(z_{1}, z_{2}\right), \phi_{2}\left(z_{1}, z_{2}\right)\right)
$$

be some pair of $f p s$ in z_{1} and z_{2} with $\phi_{i}(0,0) \neq 0, i=1,2$. Let

$$
\begin{align*}
& \binom{s_{2}}{n_{2}} \sum_{j_{1}=0}^{n_{1}}\left(\frac{\mu_{1}}{\lambda_{2}}\right)^{j_{1}}\binom{s_{1}-j_{1}}{n_{1}-j_{1}}+\binom{s_{1}}{n_{1}} \sum_{j_{2}=0}^{n_{2}}\left(\frac{\mu_{2}}{\lambda_{1}}\right)^{j_{2}}\binom{s_{2}-j_{2}}{n_{2}-j_{2}}-\left(\begin{array}{l}
\underset{\sim}{\tilde{n}}
\end{array}\right) \tag{2.12}\\
& =\sum_{\underset{\sim}{k} \geq 0}\binom{r_{1}(\underset{\sim}{k})}{k_{1}}\binom{r_{2}(\underset{\sim}{k})}{k_{2}}\binom{-r_{1}(\underset{\sim}{k})+s_{1}}{n_{1}-k_{1}}\binom{-r_{2}(\underset{\sim}{k})+s_{2}}{n_{2}-k_{2}} .
\end{align*}
$$

$$
\begin{align*}
& \frac{s_{2}^{n_{2}}}{n_{2}!} \sum_{j_{1}=0}^{n_{1}}\left(\frac{\mu_{1}}{\lambda_{2}}\right)^{\dot{j}_{1}} \frac{s_{1}^{n_{1}-j_{1}}}{\left(n_{1}-j_{1}\right)!}+\frac{s_{1}^{n_{1}}}{n_{1}!} \sum_{j_{2}=0}^{n_{2}}\left(\frac{\mu_{2}}{\lambda_{1}}\right)^{j_{2}} \frac{s_{2}^{n_{2}-j_{2}}}{\left(n_{2}-j_{2}\right)!}-\frac{s^{n}}{\underset{\sim}{n}!} \tag{2.11}\\
& =\sum_{\underset{\sim}{k} \geq} \frac{\left.r_{\sim}^{r}(\underset{\sim}{k})^{k_{1}}{\underset{r}{2}}^{(\underset{\sim}{k}}\right)^{k_{2}}}{\underset{\sim}{k}!} \frac{\left(-r_{1}(\underset{\sim}{k})+s_{1}\right)^{n_{1}-k_{1}} \cdot\left(-r_{2}(\underset{\sim}{k})+s_{2}\right)^{n_{2}-k_{2}}}{(\underset{\sim}{n}-\underset{\sim}{k})!} .
\end{align*}
$$

$$
f(\underset{\sim}{z})=\left(z_{1} / \phi_{1}(\underset{\sim}{z}), z_{2} / \phi_{2}(\underset{\sim}{z})\right) .
$$

The (two-variable) Lagrange-Good formula solves the problem of expanding a formal Laurent series $g(z)$ of the form

$$
\begin{equation*}
g(\underset{\sim}{z})=\sum_{\underset{\sim}{j} \geq \underset{\sim}{m}} g_{\sim}^{j} \underset{\sim}{z} \underset{\sim}{j}, \tag{3.1}
\end{equation*}
$$

for some $\underset{\sim}{m} \in \mathbb{Z}^{2}$, in terms of powers of $f(z)$; namely, if

$$
g(\underset{\sim}{z})=\sum_{\underset{\sim}{x} \in \mathbb{Z}^{2}} c_{\underset{\sim}{k}} f_{\sim}^{k}(\underset{\sim}{z}),
$$

then

$$
c_{\underset{\sim}{k}}=\left\langle{\underset{\sim}{z}}^{0}\right\rangle g(\underset{\sim}{z}) \Delta(\underset{\sim}{z}) f^{-k}(\underset{\sim}{z}),
$$

where $\langle\underset{\sim}{z}\rangle \alpha(\underset{\sim}{z})$ denotes the coefficient of $\underset{\sim}{\underset{\sim}{z}} 0$ in $\alpha(\underset{\sim}{z})$, and

$$
\Delta(\underset{\sim}{z})=\frac{\partial f}{\partial z}(\underset{\sim}{z}) \phi_{1}(\underset{\sim}{z}) \phi_{2}(\underset{\sim}{z}) \text { with } \frac{\partial f}{\partial z}(\underset{\sim}{z}) \text { the Jacobian of } f(\underset{\sim}{z}) .
$$

For formal Laurent series of the form (3.1), we shall use the abbreviation fLs. The general two-dimensional Lagrange inversion problem can be formulated as follows: Let $\left.F=\left(f_{\underset{\sim}{k}}^{(\underset{\sim}{z}}\right)\right)_{\underset{\sim}{k} \in \mathbb{Z}^{2}}$ be a "diagonal sequence," i.e., $\left.f_{\underset{\sim}{k}}^{\underset{\sim}{z}} \underset{\sim}{z}\right)$ is of the form

$$
f_{\underset{\sim}{k}}(\underset{\sim}{z})=\sum_{\underset{\sim}{n} \geq \underset{\sim}{k}} f_{\sim \sim}^{n k}{\underset{\sim}{z}}_{\underset{\sim}{k}} .
$$

Then, for a given sequence F, one tries to find some sequence $\tilde{F}=\left(\tilde{f}_{\underset{\sim}{k}}(\underset{\sim}{z})\right)_{\underset{\sim}{k} \in \mathbb{Z}^{2}}$ such that expanding an arbitrary $f L s g(\underset{\sim}{z})$ in terms of F,
(3.2a) $g(\underset{\sim}{z})=\sum_{\underset{\sim}{k} \in \mathbf{Z}^{2}}{\underset{\sim}{\underset{\sim}{*}}}^{\sim} f_{\underset{\sim}{k}}(\underset{\sim}{z})$,
the coefficients ${\underset{\sim}{k}}^{\sim}$ are given by

Obviously, the sequence $\tilde{\tilde{F}}$ is uniquely determined by
(3.3) $\left\langle{\underset{\sim}{\sim}}^{0}\right\rangle{\underset{\sim}{k}}_{\underset{\sim}{x}}(\underset{\sim}{z}) \cdot \tilde{f}_{\underset{\sim}{n}}(\underset{\sim}{z})=\delta_{\underset{\sim}{n k}}$,
where $\delta_{n k}^{n}$ is the Kronecker delta. In this paper, we shall solve this Lagrange inversion problem for
(3.4) $f_{\underset{\sim}{k}}(\underset{\sim}{z})={\underset{\sim}{z}}_{\sim}^{k} f_{1}\left(z_{1}\right)^{R_{1}(\underset{\sim}{k})} f_{2}\left(z_{2}\right)^{R_{2}(\underset{\sim}{k})}$,
where $f_{1}(t), f_{2}(t)$ are $f p s$ in the single variable t with $f_{i}(0) \neq 0, i=1,2$. Evidently, $\left.F=\left(f_{\underset{k}{k}}^{(\underset{\sim}{z}}\right)\right)_{\underset{\sim}{c} \in \mathbf{Z}^{2}}$ is a diagonal sequence.
Theorem 1: Let $\left.F=\left({\underset{\sim}{\underset{\sim}{k}}}^{\underset{\sim}{z}} \underset{\sim}{z}\right)\right)_{\underset{\sim}{k} \in \mathbf{Z}^{2}}$ be as defined in (3.4). The sequence

$$
\tilde{F}=\left(\tilde{f}_{\underset{\sim}{k}}^{\underset{\sim}{z}}(\underset{\sim}{z})\right)_{\underset{\sim}{k} \in \mathbf{Z}^{2}}^{\sim},
$$

uniquely determined by (3.3), is given by

$$
\text { (3.5) } \left.\quad \underset{f_{\underset{\sim}{k}}}{\underset{\sim}{z}}\right)=\frac{\mu_{1} \mu_{2}}{\left(\lambda_{1}+\mu_{1} k_{1}\right)\left(\lambda_{2}+\mu_{2} k_{2}\right)} W f_{\underset{\sim}{k}}(\underset{\sim}{z})^{-1} \text {, }
$$

where W is the operator
(3.6) $\quad W=\operatorname{det}\left|\begin{array}{lr}-z_{1} D_{1}+\frac{\lambda_{1}}{\mu_{1}} & \left(\alpha_{2}-\frac{\beta_{2}}{\mu_{2}} \lambda_{2}\right) F_{1}\left(z_{1}\right) \\ \left(\alpha_{1}-\frac{\beta_{1}}{\mu_{1}} \lambda_{1}\right) F_{2}\left(z_{2}\right) & -z_{2} D_{2}+\frac{\lambda_{2}}{\mu_{2}}\end{array}\right|$
with

$$
F_{i}\left(z_{i}\right)=z_{i} \frac{\partial f_{i}}{\partial z_{i}}\left(z_{i}\right) / f_{i}\left(z_{i}\right), i=1,2 .
$$

D_{i} stands for the differential operator with respect to z_{i}. Equivalently,

$$
\begin{align*}
\underset{\sim}{\tilde{f}_{\underset{k}{ }}(z)}=[(1 & \left.+\mu_{1} \frac{\alpha_{2}+\beta_{2} k_{2}}{\lambda_{2}+\mu_{2} k_{2}} F_{1}\left(z_{1}\right)\right)\left(1+\mu_{2} \frac{\alpha_{1}+\beta_{1} k_{1}}{\lambda_{1}+\mu_{1} k_{1}} F_{2}\left(z_{2}\right)\right) \tag{3.7}\\
& \left.-\frac{\left(\alpha_{1} \mu_{1}-\beta_{1} \lambda_{1}\right)\left(\alpha_{2} \mu_{2}-\beta_{2} \lambda_{2}\right)}{\left(\lambda_{1}+\mu_{1} k_{1}\right)\left(\lambda_{2}+\mu_{2} k_{2}\right)} F_{1}\left(z_{1}\right) F_{2}\left(z_{2}\right)\right] \underset{\sim}{{\underset{\sim}{k}}(z)^{-1} .}
\end{align*}
$$

Proof: The proof is based on the method for treating Lagrange inversion problems introduced by the author [11]. For $i=1,2$, apply ($z_{i} D_{i}+\left(\lambda_{i} / \mu_{i}\right)$) on both sides of (3.4) to get

$$
\begin{align*}
& \left(z_{i} D_{i}+\frac{\lambda_{i}}{\mu_{i}}\right) f_{\underset{\sim}{k}}(\underset{\sim}{z}) \tag{3.8}\\
& =\left[\frac{\lambda_{i}+\mu_{i} k_{i}}{\mu_{i}}+\left(\lambda_{i}+\mu_{i} k_{i}\right)\left(\frac{\beta_{3-i}}{\mu_{3-i}}+\frac{\alpha_{3-i}-\frac{\beta_{3-i}}{\mu_{3-i}} \lambda_{3-i}}{\lambda_{3-i}+\mu_{3-i} k_{3-i}}\right) F_{i}\left(z_{i}\right)\right] \underset{\sim}{f_{k}}(\underset{\sim}{z}) \\
& i=1,2 .
\end{align*}
$$

Writing $c_{i}(\underset{\sim}{k})=\left(\lambda_{i}+\mu_{i} k_{i}\right)^{-1}, i=1,2$, simple manipulations show that the system (3.8) of two equations is equivalent to the system

$$
\begin{equation*}
U_{i} f_{\underset{\sim}{k}}(\underset{\sim}{z})=c_{i}(\underset{\sim}{k}) V f_{\underset{\sim}{k}}(\underset{\sim}{z}), i=1,2, \tag{3.9}
\end{equation*}
$$

where

$$
\begin{aligned}
U_{i}= & \left(z_{3-i} D_{3-i}+\frac{\lambda_{3-i}}{\mu_{3-i}}\right)\left(\frac{1}{\mu_{i}}+\frac{\beta_{3-i}}{\mu_{3-i}} F_{i}\left(z_{i}\right)\right) \\
& +\left(\alpha_{3-i}-\frac{\beta_{3-i}}{\mu_{3-i}} \lambda_{3-i}\right) F_{i}\left(z_{i}\right)\left(\frac{1}{\mu_{3-i}}+\frac{\beta_{i}}{\mu_{i}} F_{3-i}\left(z_{3-i}\right)\right)
\end{aligned}
$$

and

$$
V=\operatorname{det}\left|\begin{array}{lr}
z_{1} D_{1}+\frac{\lambda_{1}}{\mu_{1}} & \left(\alpha_{2}-\frac{\beta_{2}}{\mu_{2}} \lambda_{2}\right) F_{1}\left(z_{1}\right) \tag{3.10}\\
\left(\alpha_{1}-\frac{\beta_{1}}{\mu_{1}} \lambda_{1}\right) F_{2}\left(z_{2}\right) & z_{2} D_{2}+\frac{\lambda_{2}}{\mu_{2}}
\end{array}\right|
$$

Now Theorem 1 of [11] with $A=\mathbb{C}, M_{1}=M_{2}=$ set of fLs, $U_{i}, V, c_{i}(\underset{\sim}{k})$ as above, may be applied. The bilinear form we need is defined by
(3.11) $(a(\underset{\sim}{z}), b(\underset{\sim}{z}))=\langle\underset{\sim}{z} \xlongequal{0}\rangle a(\underset{\sim}{z}) b(\underset{\sim}{z})$,
for fLs $a(\underset{\sim}{z})$ and $b(\underset{\sim}{z})$. Thus, by (4.4) of [11], the dual system
(3.12) $U_{i}^{*} h_{\underset{\sim}{k}}(\underset{\sim}{z})=c_{i}(\underset{\sim}{k}) W h_{\sim}^{k}(\underset{\sim}{z}), i=1,2$,
[note that $\tilde{V}^{*}=W$ as defined in (3.6), since $\left(z_{i} D_{i}\right)^{*}=-z_{i} D_{i}$] has to be solved first. It is a simple matter of fact that (3.12), the dual of (3.9), is equivalent to the dual of (3.8), which reads

$$
\begin{aligned}
& \left(-z_{i} D_{i}+\frac{\lambda_{i}}{\mu_{i}}\right) h_{\underset{\sim}{k}}(\underset{\sim}{z}) \\
& =\left[\frac{\lambda_{i}+\mu_{i} k_{i}}{\mu_{i}}+\left(\lambda_{i}+\mu_{i} k_{i}\right)\left(\frac{\beta_{3-i}}{\mu_{3-i}}+\frac{\alpha_{3-i}-\frac{\beta_{3-i}}{\mu_{3-i}} \lambda_{3-i}}{\lambda_{3-i}+\mu_{3-i} k_{3-i}}\right) F_{i}\left(z_{i}\right)\right] \underset{\sim}{h_{k}}(\underset{\sim}{z}) \\
& i=1,2 .
\end{aligned}
$$

A solution of this system of equations is seen to be $h_{\underset{\sim}{k}}(\underset{\sim}{z})=\underset{\sim}{f} \underset{\sim}{f}(\underset{\sim}{z})^{-1}$, hence, by (4.6) of [11], respecting $V^{*}=W$,

$$
\tilde{f}_{\underset{\sim}{k}}(\underset{\sim}{z})=\frac{\mu_{1} \mu_{2}}{\left(\lambda_{1}+\mu_{1} k_{1}\right)\left(\lambda_{2}+\mu_{2} k_{2}\right)} W h_{\underset{\sim}{x}}^{\underset{\sim}{z}}(\underset{\sim}{z}),
$$

which establishes (3.5). A little bit of calculation from (3.5) leads to (3.7) .

Corollary 2 (Lagrange formula) : Let $F=\left(f_{\underset{\sim}{k}}(\underset{\sim}{z})\right)_{\underset{\sim}{k} \in \mathbf{Z}^{2}}$ be as defined in (3.4). The coefficients in the expansion

$$
\begin{align*}
& g(\underset{\sim}{z})=\sum_{\underset{\sim}{k} \in \mathbb{Z}^{2}}{\underset{\sim}{x}}_{\underset{\sim}{k}} f_{\sim}^{k}(\underset{\sim}{z}) \tag{3.13}\\
& \text { en })
\end{align*}
$$

are given by
(3.14) $\quad c_{\underset{\sim}{k}}=\langle\underset{\sim}{z} \underset{\sim}{0}\rangle g(\underset{\sim}{z}) \underset{\sim}{\underset{\sim}{k}} \underset{\sim}{z}(\underset{\sim}{z})$,
with $\underset{f_{k}}{\underset{\sim}{x}}(\underset{\sim}{z})$ of (3.7), or
(3.15) $\quad \underset{\sim}{k}=\frac{\mu_{1} \mu_{2}}{\left(\lambda_{1}+\mu_{1} k_{1}\right)\left(\lambda_{2}+\mu_{2} k_{2}\right)}\left\langle\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{0}{\underset{\sim}{k}}_{\underset{\sim}{k}}(\underset{\sim}{z})^{-1} V g(\underset{\sim}{z})\right.$.
\left. Proof: Equation (3.14) is merely (3.2) for ${\underset{\sim}{\underset{\sim}{k}}}_{\underset{\sim}{~}}^{\underset{\sim}{z}}\right)$ of (3.4), (3.15) is based on (3.14), (3.5), and $W^{*}=V$ 。

As a first application, we shall prove (1.7) of Cohen \& Hudson [5]. Take $f_{1}(t)=f_{2}(t)=\exp t$, which implies $F_{1}(t)=F_{2}(t)=t$. Let

$$
g(\underset{\sim}{z})=\frac{1}{\lambda_{1} \lambda_{2}} \sum_{j=0}^{\infty} \frac{\left[\left(\alpha_{1}-\frac{\beta_{1}}{\mu_{1}} \lambda_{1}\right)\left(\alpha_{2}-\frac{\beta_{2}}{\mu_{2}} \lambda_{2}\right) z_{1} z_{2}\right]^{j}}{\left(\lambda_{1} / \mu_{1}+1\right)_{j}\left(\lambda_{2} / \mu_{2}+1\right)_{j}}
$$

where $(\alpha)_{j}=\alpha(\alpha+1) \ldots(\alpha+j-1)$. For this choice of $f_{i}(t)$ [V depends on $\left.F_{i}(t)!\right], g(\underset{\sim}{z})$ satisfies $V g(\underset{\sim}{z})=1 / \mu_{1} \mu_{2}$. Utilizing the Lagrange formula (3.15), from this fact we obtain

$$
\begin{align*}
& \frac{1}{\lambda_{1} \lambda_{2}} \sum_{j=0}^{\infty} \frac{\left[\left(\alpha_{1}-\frac{\beta_{1}}{\mu_{1}} \lambda_{1}\right)\left(\alpha_{2}-\frac{\beta_{2}}{\mu_{2}} \lambda_{2}\right) z_{1} z_{2}\right]^{j}}{\left(\lambda_{1} / \mu_{1}+1\right)_{j}\left(\lambda_{2} / \mu_{2}+1\right)_{j}} \tag{3.16}\\
& =\sum_{\underset{\sim}{k} \geq \underset{\sim}{0}}\left(\lambda_{1}+\mu_{1} k_{1}\right)^{-1}\left(\lambda_{2}+\mu_{2} k_{2}\right)^{-1} \frac{R_{1}(\underset{\sim}{k})^{k_{1}} R_{2}(\underset{\sim}{k})^{k_{2}}}{\underset{\sim}{k}!}(-\underset{\sim}{z})_{\sim}^{k} \exp \left(R_{1}(\underset{\sim}{k}) z_{1}+R_{2}(\underset{\sim}{k}) z_{2}\right) .
\end{align*}
$$

Equation (3.16) is another two-variable extension of (1.1) (set $z_{2}=0$).

4. Coefficient Formulas for Some Special Expansions

The following technical lemma turns out to be useful for further computations.
Lemma 3: Let $h(t)$ be an fLs in t. With the assumptions of Theorem 1 ,

$$
\begin{align*}
& \langle\underset{\sim}{z} \stackrel{0}{\sim}\rangle h\left(z_{3-i}\right) F_{i}\left(z_{i}\right) f_{\underset{\sim}{k}}(\underset{\sim}{z})^{-1} \tag{4.1}\\
& =-\frac{k_{i}\left(\lambda_{3-i}+\mu_{3-i} k_{3-i}\right)}{\left(\lambda_{i}+\mu_{i} k_{i}\right)\left(\alpha_{3-i}+\beta_{3-i} k_{3-i}\right)}\langle\underset{\sim}{z} \stackrel{0}{\sim}\rangle h(z 3-i) f_{\underset{\sim}{k}}(\underset{\sim}{z})^{-1} \text {, for } i=1,2 \text {. }
\end{align*}
$$

Proof: Without loss of generality we prove (4.1) for $i=1$. We start with the identity

$$
\begin{aligned}
&\langle\underset{\sim}{z}\underset{\sim}{0}\rangle \\
&\left(z_{2}\right) \\
&=\left.-\langle\underset{\sim}{z} \underset{\sim}{0}\rangle h\left(z_{1}\right) \frac{\alpha_{2}+\beta_{2} k_{2}}{\lambda_{2}+\mu_{2} k_{2}} F_{1}\left(z_{1}\right)\right){\underset{\sim}{k}}_{\underset{\sim}{k}}(\underset{\sim}{z})^{-1} \\
& \cdot \frac{1}{k_{1}} f_{2}\left(z_{2}\right)^{-R_{2}(\underset{\sim}{k})} f_{1}\left(z_{1}\right)^{-\lambda_{1}}\left(\alpha_{2}+z_{2} k_{2}\right) /\left(\lambda_{2}+\mu_{2} k_{2}\right)
\end{aligned} .
$$

Because of $\left(z_{1} D_{1}\right)^{*}=-z_{1} D_{1}$ [with respect to the bilinear form of (3.11)] the right-hand side of this equation is equal to

$$
\begin{gathered}
\frac{1}{k_{1}}\langle\underset{\sim}{\sim} \stackrel{0}{\sim}\rangle z_{1} D_{1}\left[h\left(z_{2}\right) z_{2}^{-k_{2}} f_{2}\left(z_{2}\right)^{-R_{2}(\underset{\sim}{k})} f_{1}\left(z_{1}\right)^{-\lambda_{1}\left(\alpha_{2}+\beta_{2} k_{2}\right) /\left(\lambda_{2}+\mu_{2} k_{2}\right)}\right] \cdot \\
\cdot z_{1}^{-k_{1}} f_{1}\left(z_{1}\right)^{-\mu_{1} k_{1}\left(\alpha_{2}+\beta_{2} k_{2}\right) /\left(\lambda_{2}+\mu_{2} k_{2}\right)}
\end{gathered}
$$

Together with a bit of manipulation, we finally arrive at (4.1). Corollary 4: Let $f_{k}(\underset{\sim}{z})$ be given by (3.4). Then
(4.2) $1=\sum_{\underset{\sim}{k} \geq \underset{\sim}{0}} \frac{\lambda_{1} \lambda_{2}-k_{1} k_{2} \frac{\left(\alpha_{1} \mu_{1}-\beta_{1} \lambda_{1}\right)\left(\alpha_{2} \mu_{2}-\beta_{2} \lambda_{2}\right)}{\left(\alpha_{1}+\beta_{1} k_{1}\right)\left(\alpha_{2}+\beta_{2} k_{2}\right)}}{\left(\lambda_{1}+\mu_{1} k_{1}\right)\left(\lambda_{2}+\mu_{2} k_{2}\right)}{\underset{\sim}{\underset{\sim}{k}}}^{f_{\underset{\sim}{*}}^{\underset{\sim}{k}}(\underset{\sim}{z})}$,
where $\left.d_{\underset{\sim}{k}}=\langle\underset{\sim}{z} \underset{\sim}{0}\rangle{\underset{\sim}{k}}^{\underset{\sim}{z}} \underset{\sim}{z}\right)^{-1}$.
Proof: By (3.14) we have to compute

$$
\langle\underset{\sim}{z}\rangle 1 \cdot \underset{\sim}{\tilde{f}} \underset{\sim}{k}(\underset{\sim}{z})=\langle\underset{\sim}{z} \underset{\sim}{0}\rangle \tilde{f}_{k}(\underset{\sim}{z}) .
$$

Using the form (3.7) of $\tilde{f}_{k}(\underset{\sim}{z})$, repeated application of (4.1) gives

$$
\begin{aligned}
& \langle\underset{\sim}{\underset{\sim}{\sim}}\rangle \underset{\sim}{\underset{f}{k}} \underset{\sim}{z} \underset{\sim}{z})=\left\langle\underset { \sim } { \underset { \sim } { \sim } } { } _ { \sim } ^ { \sim } \left[\left(1-\mu_{1} \frac{k_{1}}{\lambda_{1}+\mu_{1} k_{1}}\right)\left(1-\mu_{2} \frac{k_{2}}{\lambda_{2}+\mu_{2} k_{2}}\right)\right.\right. \\
& \left.-\frac{\left(\alpha_{1} \mu_{1}-\beta_{1} \lambda_{1}\right)\left(\alpha_{2} \mu_{2}-\beta_{2} \lambda_{2}\right)}{\left(\alpha_{1}+\beta_{1} k_{1}\right)\left(\alpha_{2}+\beta_{2} k_{2}\right)} \cdot \frac{k_{1} k_{2}}{\left(\lambda_{1}+\mu_{1} k_{1}\right)\left(\lambda_{2}+\mu_{2} k_{2}\right)}\right] f_{\mathcal{K}}(\underset{\sim}{z})^{-1} \\
& =\frac{\lambda_{1} \lambda_{2}-k_{1} k_{2} \frac{\left(\alpha_{1} \mu_{1}-\beta_{1} \lambda_{1}\right)\left(\alpha_{2} \mu_{2}-\beta_{2} \lambda_{2}\right)}{\left(\alpha_{1}+\beta_{1} k_{1}\right)\left(\alpha_{2}+\beta_{2} k_{2}\right)}}{\left(\lambda_{1}+\mu_{1} k_{1}\right)\left(\lambda_{2}+\mu_{2} k_{2}\right)}\langle\underset{\sim}{z}\rangle \underset{\sim}{\underset{\sim}{k}} \underset{\sim}{z}(\underset{\sim}{r})^{-1},
\end{aligned}
$$

which furnishes (4.2). \square
For $f_{i}\left(z_{i}\right)=\exp \left(-z_{i}\right)$ and $f_{i}\left(z_{i}\right)=\left(1+z_{i}\right)^{-1}$, respectively, the expansions (2.8) and (2.9) are obtained as special cases of (4.2). The mixed analogue (2.10) is (4.2) with $f_{1}\left(z_{1}\right)=\exp \left(-z_{1}\right)$ and $f_{2}\left(z_{2}\right)=\left(1+z_{2}\right)^{-1}$.

Quite analogously, we prove
Corollary 5: If $f_{k}(\underset{\sim}{z})=\underset{\sim}{z} \underset{\sim}{k} f_{1}\left(z_{1}\right)^{r_{1}(\underset{\sim}{k})} f_{2}\left(z_{2}\right)^{R_{2}(\underset{\sim}{k})}$, then

$$
\begin{equation*}
\frac{1}{\lambda_{1}+\mu_{2} \alpha_{1} F_{2}\left(z_{2}\right)}=\sum_{\underset{\sim}{k} \geq \underset{\sim}{0}}\left(\lambda_{1}+\mu_{1} k_{1}\right)^{-1} d_{\underset{\sim}{k}}^{f_{\sim}^{k}} \underset{\sim}{\underset{\sim}{z}}(\underset{\sim}{z}), \tag{4.3}
\end{equation*}
$$

where $\left.d_{\underset{\sim}{k}}=\langle\underset{\sim}{z} \underset{\sim}{0}\rangle \underset{\sim}{\underset{\sim}{k}} \underset{\sim}{z}\right)^{-1}$.
Sketch of Proof: Again using (3.14), (3.7), and (4.1) we proceed along the lines of the proof of the preceding corollary.

The expansions (2.4)-(2.7) are special cases of (4.3). Finally, we have Corollary 6: If $\left.f_{\underset{\sim}{k}}^{\underset{\sim}{z}} \underset{\sim}{z}\right)=\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{k} f_{1}\left(z_{1}\right)^{r_{1}(\underset{\sim}{k})} f_{2}\left(z_{2}\right)^{r_{2}(\underset{\sim}{k})}$, then
(4.4) $\frac{1-\frac{\mu_{1} \mu_{2}}{\lambda_{1} \lambda_{2}} F_{1}\left(z_{1}\right) F_{2}\left(z_{2}\right)}{\left(1+\frac{\mu_{1}}{\lambda_{2}} F_{1}\left(z_{1}\right)\right)\left(1+\frac{\mu_{2}}{\lambda_{1}} F_{2}\left(z_{2}\right)\right)}=\sum_{\underset{\sim}{k} \geq \underset{\sim}{0}}^{\left(d_{\sim}^{k}\right.} f_{\sim} \underset{\sim}{k}(\underset{\sim}{z})$,
where $d_{\underset{\sim}{k}}=\langle\underset{\sim}{z} \underset{\sim}{0}\rangle{\underset{\sim}{f}}_{\underset{\sim}{k}}(\underset{\sim}{z})^{-1}$.

Proof: Observe that the left-hand side of (4.4) is equal to

$$
1 /\left(1+\frac{\mu_{1}}{\lambda_{2}} F_{1}\left(z_{1}\right)\right)+1 /\left(1+\frac{\mu_{2}}{\lambda_{1}} F_{2}\left(z_{2}\right)\right)-1
$$

This in hand, the method used to prove Corollary 4 can be used again to settle (4.4) .

Equations (2.1)-(2.3) are special cases of (4.4).

References

1. L. Carlitz. "An Application of MacMahon's Master Theorem." SIAM J. Appl. Math. 26 (1974):431-36.
2. L. Carlitz. "Some Expansions and Convolution Formulas Related to MacMahon's Master Theorem." SIAM J. Math. AnaZ. 8 (1977):320-36.
3. M. E. Cohen. "On Expansion Problems: New Classes of Formulas for the Classical Functions." SIAM J. Math. Anal. 7 (1976):702-12.
4. M. E. Cohen. "Some Classes of Generating Functions for the Laguerre and Hermite Polynomials." Math. of Comp. 31 (1977):511-18.
5. M. E. Cohen \& D. L. Hudson. "On Exponential Series Expansions and Convolutions." Fibonacci Quarteriy 21 (1983):111-17.
6. H. W. Gould. "Some Generalizations of Vandermonde's Convolution." Amer. Math. Monthly 63 (1956):84-91.
7. H. W. Gould. "Generalizations of a Theorem of Jensen Concerning Convolutions." Duke Math. J. 27 (1960):71-76.
8. H. W. Gould. "A New Convolution Formula and Some New Orthogonal Relations for Inversion of Series." Duke Math. J. 29 (1962):393-404.
9. S. A. Joni. "Expansion Formulas: Part I." J. Math. Anal. Appl. 81 (1981): 364-77; "Expansion Formulas: Part II." J. Math. Anal. Appl. 82 (1981):113.
10. S. A. Joni. "Lagrange Inversion in Higher Dimensions and Umbral Operators." Linear and MuZtiZinear AZgebra 6 (1978):111-21.
11. C. Krattenthaler. "Operator Methods and Lagrange Inversion: A Unified Approach to Lagrange Fromulas." Trans. Amer. Math. Soc. 305 (1988):431-65.
12. J. Riordan. Combinatorial Identities. New York: John Wiley, 1968.
