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1. Introduction 

This note deals with certain inequalities involving the elementary arith-
metic functions d(r) , (j>(r), a n d a/<(p) a n d their unitary analogues. We recall 
that a divisor d of p is called unitary [2] if (J, r/d) = 1. Let e E 1, Ik(r) 
= jok (// > o) , and u denote the Mobius function. In terms of Dirichlet convolu-
tion, denoted by (° ), we have [1]: 

where _T(P) = p. 

The unitary convolution of two arithmetic functions f and g is defined by 

(1.1) (f®g)(r) = E/W)ff(|), 

where d||p means that J runs through the unitary divisors of p. The unitary 
analogue u* of u is given by [2] 

(1.2) u*(r) = (-l)w(r), 

where OO(P) denotes the number of distinct prime factors of p with GO (1) = 0. 
The unitary analogue (f)* [2] of the Euler totient is given by 

(1.3) cj)*(r) = (I © u*)(r). 
The unitary analogues of d and afc are d* and a* and 

(1.4) d*(r) = 2a)(p)5 

O)(P) being as defined in (1.2); 

For properties of a*, see [5]. It is known that d*, <f>*, and a* are multiplica-
tive functions. Further, given a prime p, 777 > 1, 

(<i*(pm) = 2 
(1.5) < <j>*(p"0 = p™ - 1 

(a*(p"0 = pm/i + 1 

Let <\>k = (Ik • y) . $k(r) is multiplicative in p 
1 the structure of <j>, and a^ 

(*k • crk) = (Ik • y) • (Xfc • e) 

From the structure of <j>, and a^, we note that 

(Jfc ' I ^ ) ' ( y e ) 
(IV • IV) as y is the Dirichlet inverse of g. 

or 
(1.6) X *k(d)ak(|) = pfcd(p) (fe > 1). 
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I t follows that 

,(r) + ok{r) = X ^W)a k g ) = rkd(r). 
d\r 

Therefore, dxi> a*r 

(1.7) $k(v) + ok(r) < rkd(r) 
with equality if and only if v is a prime. 

In arriving at (1.7), we have used the fact that cj)̂  and ok assume only pos-
itive values. 

Defining ^ = _Z\ © y*, and noting that 

(1.8) cj)* © a* = rkd*(r), 
we have 

Theorem 1: (j)̂ (r) + a?(r) < rkd*(r) with equality if and only if r is a prime 
power. 

Further, using the fact that 

$*®d* = a*, 
we also obtain 

Theorem 2: (J>*(p) + d*(r) < aj(p) with equality if and only if v is a prime 
power. 

We remark that Theorem 2 is analogous to the inequality involving §, d, and 
a, see [4], [6]. 

Using the multiplicativity of <j>? and ajff, one could also prove 

Theorem 3: For fc > 1, 
1 q£(rH%(*0 

£(2fc) r2 < X' 

where £(s) is the Riemann ^-function. 

Now, the AM-GM inequality yields 

(1.9) - £ — > Pk/2 (see [9]) 
d(r) 

and 
(1.10) 1 ^ 2 ^ . 

The aim of this note is to establish a few more inequalities which come out 
as special cases of certain general inequalities found in [3] and [7]. 

Let 

0 < a < ai < A /• = i ? \ 
0 < b < bi < B U 1, z, ..., s; 

where a^, bi (i = 1, 2, . . . , s) , a, i4, 2?, B are real numbers. Then, from [7], 

( L I D i-i -/u«i V ^ W 5 + a£)2 

i= 1 / 
Next, let 

0 < a(/°  < af} < . . . < a{k) (k = 1, 2, . . . , m) . 

Then, an inequality due to Tchebychef [3] states that: 
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(1.12) U ^ -
(1)\ 

The i n e q u a l i t i e s de r ived i n Sec t ion 2 a r e e s s e n t i a l l y i l l u s t r a t i o n s of (1 .11) 
and ( 1 . 1 2 ) . 

2. Inequa l i t i e s 

Theorem 4: For k > 0, 

(2.D £ ^ < £ i ± l 
*• d ( r ) " 2 
and 
n ^ a * ( p ) < p k + l 
K } d*W " 2 " 
Proof of (2.1): Let <i]_, . . . , <is be the d i v i s o r s of p . We appea l to (1 .11) by 
t a k i n g a^ = d\l2 , ^ = ^ m / 2 , 4 = rk/2, a = 1, b = r~m/2 , 5 = 1 . Then 

afe(p)gff l(p) (P:fe/2 + r -w/2 )2 

W a ( r ) V 4r 
V(k-m)/2 

or 

(p) \2 ~ 4r,fc/2 -w/2 
ik-m)/l) 

(av(r)om(r))1^ i 
f? 3) ^ K ^ ' rrt - - ^ (r(k + m)/2 + n 

(k-m)/2 

S e t t i n g ??7 = k i n ( 2 . 3 ) 5 we o b t a i n ( 2 . 1 ) . 

S i m i l a r l y , by c o n s i d e r i n g the u n i t a r y d i v i s o r s of r , we a r r i v e a t ( 2 . 2 ) . 
In view of (1 .9) and ( 1 . 1 0 ) , we a l s o have 

Corollary: 

(2 .4 ) rk/z < 
tffcO?) vk + 1 
d(v) ~ 2 

and 

(2 .5 ) Vkl2 < - * r — < 
a * ( r ) 2 

Theorem 5: For k5 m > 0, 

(2 .6 ) ^ ^ > r k / 2 

am(p) 
and 
(2 .7 ) ^ ^ 

o?+m(^) 

Proof of (2.6): Let cfj, . . . , <fs be the d i v i s o r s of r . We appea l to (1 .12) wi th 

a(1) - d \ \ . . . . a f = d\" (i - 1, 2, . . . , 8 ) 
where fc]_, . . . , /cm a r e p o s i t i v e numbers. . 
Then, 

> % + .. .+fcw(r> , g f e i W ^ 

with s = d(r). From (1.9), we obtain 

(2.8) — - --— > r2j*i . 

Wri t ing TT? = 2, we get 
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which proves (2.6). 

The proof of (2.7) is similar and is omitted here. 

Remark: Inequalities (2.6) and (2.7) generalize (1.9) and (1.10), respectively. 

In this connection, we point out that analogous to the inequality 
$(r)d(r) > r [8], one could prove using multiplicativity of (j)* and d* that 

Theorem 6: For k > 1, 

(2.9) d*(r)rk < <\>*(r) (d*(r))2 < r2k . 

The proof of (2.9) is omitted. 
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