ON CERTAIN NUMBER-THEORETIC INEQUALITIES

J. Sándor

4136, Forteni Nr. 79, Jud. harghita, Romania

L. Tóth

str. N. Golescu Nr. 5, 3900 Satu-Mare, Romania (Submitted July 1988)

1. Introduction

This note deals with certain inequalities involving the elementary arithmetic functions d(r), $\phi(r)$, and $\sigma_k(r)$ and their unitary analogues. We recall that a divisor d of r is called unitary [2] if (d, r/d) = 1. Let $e \equiv 1$, $I_k(r) = r^k$ ($k \ge 0$), and μ denote the Möbius function. In terms of Dirichlet convolution, denoted by (•), we have [1]:

 $\begin{array}{l} d(r) &= (e \cdot e)(r) \\ \phi(r) &= (I \cdot \mu)(r) \\ \sigma_k(r) &= (I_k \cdot e)(r) \end{array} \right\} \text{ where } I(r) = r.$

The unitary convolution of two arithmetic functions f and g is defined by

(1.1)
$$(f \oplus g)(r) = \sum_{d \mid r} f(d)g\left(\frac{r}{d}\right),$$

where $d \| r$ means that d runs through the unitary divisors of r. The unitary analogue μ^* of μ is given by [2]

(1.2) $\mu^{*}(r) = (-1)^{\omega(r)},$

where $\omega(r)$ denotes the number of distinct prime factors of r with $\omega(1) = 0$. The unitary analogue ϕ^* [2] of the Euler totient is given by

(1.3) $\phi^{*}(r) = (I \oplus \mu^{*})(r).$

The unitary analogues of d and σ_k are d^{\bigstar} and σ_k^{\bigstar} and

(1.4) $d^*(r) = 2^{\omega(r)},$

 $\omega(r)$ being as defined in (1.2);

$$\sigma_{\nu}^{\star}(r) = (I_k \oplus e)(r).$$

For properties of σ_k^* , see [5]. It is known that d^* , ϕ^* , and σ_k^* are multiplicative functions. Further, given a prime $p, m \ge 1$,

(1.5)
$$\begin{cases} d^{*}(p^{m}) = 2\\ \phi^{*}(p^{m}) = p^{m} - 1\\ \sigma^{*}_{t}(p^{m}) = p^{mk} + 1 \end{cases}$$

Let $\phi_k = (I_k \cdot \mu)$. $\phi_k(r)$ is multiplicative in r. From the structure of ϕ_k and σ_k , we note that

 $\begin{aligned} (\phi_k \cdot \sigma_k) &= (\mathcal{I}_k \cdot \mu) \cdot (\mathcal{I}_k \cdot e) \\ &= (\mathcal{I}_k \cdot \mathcal{I}_k) \cdot (\mu \cdot e) \\ &= (\mathcal{I}_k \cdot \mathcal{I}_k) \text{ as } \mu \text{ is the Dirichlet inverse of } e. \end{aligned}$

or

(1.6)
$$\sum_{d|r} \phi_k(d) \sigma_k\left(\frac{r}{d}\right) = r^k d(r) \quad (k \ge 1).$$

1990]

255

It follows that

$$\phi_k(r) + \sigma_k(r) = \sum_{\substack{d \mid r \\ d \neq 1, d \neq r}} \phi_k(d) \sigma_k\left(\frac{r}{d}\right) = r^k d(r).$$

(1.7) $\phi_k(r) + \sigma_k(r) \leq r^k d(r)$

with equality if and only if r is a prime.

In arriving at (1.7), we have used the fact that φ_k and σ_k assume only positive values.

Defining $\phi_k^{\star} = I_k \oplus \mu^{\star}$, and noting that

(1.8)
$$\phi_{\mu}^{\star} \oplus \sigma_{\mu}^{\star} = r^{k} d^{\star}(r),$$

we have

.

Theorem 1: $\phi_k^*(r) + \sigma_k^*(r) \le r^k d^*(r)$ with equality if and only if r is a prime power.

Further, using the fact that

$$\phi_{L}^{\star} \oplus d^{\star} = \sigma_{L}^{\star},$$

we also obtain

Theorem 2: $\phi_k^*(r) + d^*(r) \le \sigma_k^*(r)$ with equality if and only if r is a prime power.

We remark that Theorem 2 is analogous to the inequality involving $\phi,$ d, and $\sigma,$ see [4], [6].

Using the multiplicativity of ϕ_k^{\star} and σ_k^{\star} , one could also prove

Theorem 3: For $k \ge 1$,

$$\frac{1}{\zeta(2k)} < \frac{\sigma_k^*(r)\phi_k^*(r)}{r^2} < 1,$$

where $\zeta(s)$ is the Riemann ζ -function.

Now, the AM-GM inequality yields

(1.9)
$$\frac{\sigma_k(r)}{d(r)} \ge r^{k/2}$$
 (see [9])
and
(1.10) $\frac{\sigma_k^*(r)}{d^*(r)} \ge r^{k/2}$.

The aim of this note is to establish a few more inequalities which come out as special cases of certain general inequalities found in [3] and [7]. Let

where a_i , b_i (i = 1, 2, ..., s), a, A, b, B are real numbers. Then, from [7],

(1.11)
$$\frac{\left(\sum_{i=1}^{s} a_i^2\right)\left(\sum_{i=1}^{s} b_i^2\right)}{\left(\sum_{i=1}^{s} a_i b_i\right)^2} \le \frac{(AB + ab)^2}{4ABab}$$

Next, let

 $0 \le \alpha_1^{(k)} \le \alpha_2^{(k)} \le \dots \le \alpha_s^{(k)} \quad (k = 1, 2, \dots, m).$

Then, an inequality due to Tchebychef [3] states that:

256

[Aug.

(1.12)
$$\left(\frac{\sum\limits_{i=1}^{s} \alpha_{i}^{(1)}}{s}\right) \cdots \left(\frac{\sum\limits_{i=1}^{s} \alpha_{i}^{(m)}}{s}\right) \leq \frac{\sum\limits_{i=1}^{s} \alpha_{i}^{(1)} \cdots \alpha_{i}^{(m)}}{s}$$

The inequalities derived in Section 2 are essentially illustrations of (1.11) and (1.12).

2. Inequalities

Theorem 4: For $k \ge 0$,

(2.1)
$$\frac{\sigma_k(r)}{d(r)} \le \frac{r^k + 1}{2}$$

and
(2.2) $\frac{\sigma_k^*(r)}{d^*(r)} \le \frac{r^k + 1}{2}$.

Proof of (2.1): Let d_1, \ldots, d_s be the divisors of r. We appeal to (1.11) by taking $a_i = d_i^{k/2}$, $b_i = d_i^{-m/2}$, $A = r^{k/2}$, a = 1, $b = r^{-m/2}$, B = 1. Then

or

$$\frac{\sigma_{k}(r)\sigma_{m}(r)}{r^{m}(\sigma_{(k-m)/2}^{(r)})^{2}} \leq \frac{(r^{k/2} + r^{-m/2})^{2}}{4r^{k/2 - m/2}}$$
or

$$\frac{(\sigma_{k}(r)\sigma_{m}(r))^{1/2}}{\sigma_{(k-m)/2}^{(r)}} \leq \frac{1}{2r^{(k-m)/2}}(r^{(k+m)/2} + 1)$$

Setting m = k in (2.3), we obtain (2.1).

Similarly, by considering the unitary divisors of p, we arrive at (2.2). In view of (1.9) and (1.10), we also have

Corollary:

(2.4) $r^{k/2} \leq \frac{\sigma_k(r)}{d(r)} \leq \frac{r^k + 1}{2}$ and

(2.5)
$$r^{k/2} \leq \frac{\sigma_k^*(r)}{d^*(r)} \leq \frac{r^k + 1}{2}$$

Theorem 5: For k, $m \ge 0$,

(2.6)
$$\frac{\sigma_{k+m}(r)}{\sigma_m(r)} \ge r^{k/2}$$

and
(2.7)
$$\frac{\sigma_{k+m}^*(r)}{\sigma^*(r)} \ge r^{k/2}.$$

Proof of (2.6): Let d_1, \ldots, d_s be the divisors of r. We appeal to (1.12) with $a_i^{(1)} = d_i^{k_1}, \ldots, a_i^{(m)} = d_i^{k_m}$ $(i = 1, 2, \ldots, s)$

where k_1, \ldots, k_m are positive numbers. Then,

$$\frac{\sigma_{k_1+\cdots+k_m}(r)}{s} \geq \frac{\sigma_{k_1}(r)}{s} \cdots \frac{\sigma_{k_m}(r)}{s}$$

with s = d(r). From (1.9), we obtain (2.8) $\frac{\sigma_{k_1} + \dots + k_m(r)}{\sigma_{k_i}(r)} \ge r^{\frac{1}{2} \sum_{j \neq i} k_j}$. Writing m = 2, we get

1990]

257

ON CERTAIN NUMBER-THEORETIC INEQUALITIES

$$\frac{\sigma_{k_1+k_2}(r)}{\sigma_{k_2}(r)} \ge r^{k_1/2},$$

which proves (2.6).

The proof of (2.7) is similar and is omitted here.

Remark: Inequalities (2.6) and (2.7) generalize (1.9) and (1.10), respectively.

In this connection, we point out that analogous to the inequality $\phi(r)d(r) \ge r$ [8], one could prove using multiplicativity of ϕ_k^* and d^* that

Theorem 6: For $k \ge 1$,

 $d^{*}(r)r^{k} \leq \phi_{k}^{*}(r)(d^{*}(r))^{2} \leq r^{2k}.$ (2.9)

The proof of (2.9) is omitted.

Acknowledgments

The authors wish to thank Professor J. Aczél for his suggestions on the presentation of the material and the referee for some valuable additional references and suggestions.

References

- 1. K. Chandrasekharan. Introduction to Analytic Number Theory. New York:
- Springer Verlag, 1968. Eckford Cohen. "Arithmetical Functions Associated with the Unitary Divisors 2. of an Integer." Math. Zeit. 74 (1960):66-80.
- 3. G. H. Hardy, G. E. Littlewood, & G. Pólya. Inequalities. Cambridge, Mass.: Cambridge University Press, 1964.
- 4. A. Makowski. Problem 339. Elemente der Mathematik 13 (1958):115.
- Jose Morgado. "On the Arithmetic Function σ_k^{\star} ." Port. Math. 23 (1964):35-40. 5.
- C. A. Nicol. Problem E 1674. Amer. Math. Monthly 72 (1965):186. 6.
- G. Pólya & G. Szegö. Aufgaben und Lehrsätze aus der Analysis. New York: 7. Springer Verlag, 1924.
- 8. R. Sivaramakrishnan. Problem E 1962. Amer. Math. Monthly 74 (1967):198.
- 9. C. S. Venkataraman & R. Sivaramakrishnan. Problem 5326. Amer. Math. Monthly 72 (1965):915.

Υ.