ON CERTAIN NUMBER-THEORETIC INEQUALITIES

J. Sándor

4136, Forteni Nr. 79, Jud. harghita, Romania

L. Tóth

str. N. Golescu Nr. 5, 3900 Satu-Mare, Romania
(Submitted July 1988)

1. Introduction

This note deals with certain inequalities involving the elementary arithmetic functions $d(r), \phi(r)$, and $\sigma_{k}(r)$ and their unitary analogues. We recall that a divisor d of r is called unitary [2] if $(d, r / d)=1$. Let $e \equiv 1$, $I_{k}(r)$ $=r k(k \geq 0)$, and μ denote the Möbius function. In terms of Dirichlet convolution, denoted by (•), we have [1]:

$$
\left.\begin{array}{rl}
d(r) & =(e \cdot e)(r) \\
\phi(r) & =(I \cdot \mu)(r) \\
\sigma_{k}(r) & =\left(I_{k} \cdot e\right)(r)
\end{array}\right\} \text { where } I(r)=r .
$$

The unitary convolution of two arithmetic functions f and g is defined by
(1.1) $(f \oplus g)(r)=\sum_{d \|_{r}} f(d) g\left(\frac{r}{d}\right)$,
where $d \| r$ means that d runs through the unitary divisors of r. The unitary analogue μ^{*} of μ is given by [2]
(1.2) $\mu^{*}(r)=(-1)^{\omega(r)}$,
where $\omega(r)$ denotes the number of distinct prime factors of r with $\omega(1)=0$. The unitary analogue ϕ^{*} [2] of the Euler totient is given by
(1.3) $\phi^{*}(r)=\left(I \oplus \mu^{*}\right)(r)$.

The unitary analogues of d and σ_{k} are d^{*} and σ_{k}^{*} and
(1.4) $d^{*}(r)=2^{\omega(r)}$,
$\omega(r)$ being as defined in (1.2);

$$
\sigma_{k}^{\star}(r)=\left(I_{k} \oplus e\right)(r)
$$

For properties of σ_{k}^{*}, see [5]. It is known that d^{*}, ϕ^{*}, and σ_{k}^{*} are multiplicative functions. Further, given a prime $p, m \geq 1$,

$$
\left\{\begin{array}{l}
d^{*}\left(p^{m}\right)=2 \tag{1.5}\\
\phi^{*}\left(p^{m}\right)=p^{m}-1 \\
\sigma_{k}^{*}\left(p^{m}\right)=p^{m k}+1
\end{array}\right.
$$

Let $\phi_{k}=\left(I_{k} \cdot \mu\right) . \phi_{k}(r)$ is multiplicative in r.
From the structure of ϕ_{k} and σ_{k}, we note that

$$
\begin{aligned}
\left(\phi_{k} \cdot \sigma_{k}\right) & =\left(I_{k} \cdot \mu\right) \cdot\left(I_{k} \cdot e\right) \\
& =\left(I_{k} \cdot I_{k}\right) \cdot(\mu \cdot e) \\
& =\left(I_{k} \cdot I_{k}\right) \text { as } \mu \text { is the Dirichlet inverse of } e .
\end{aligned}
$$

or
(1.6) $\quad \sum_{d \mid r} \phi_{k}(d) \sigma_{k}\left(\frac{r}{d}\right)=r^{k} d(r) \quad(k \geq 1)$.

It follows that
$\phi_{k}(r)+\sigma_{k}(r)=\sum_{\substack{d \mid r \\ d \neq 1, d \neq r}} \phi_{k}(d) \sigma_{k}\left(\frac{r}{d}\right)=r^{k} d(r)$.
Therefore,
(1.7) $\quad \phi_{k}(r)+\sigma_{k}(r) \leq r^{k} d(r)$
with equality if and only if r is a prime.
In arriving at (1.7), we have used the fact that ϕ_{k} and σ_{k} assume only positive values.

Defining $\phi_{k}^{*}=I_{k} \oplus \mu^{*}$, and noting that
(1.8) $\quad \phi_{k}^{*} \oplus \sigma_{k}^{*}=r^{k} d^{*}(r)$,
we have
Theorem 1: $\phi_{k}^{*}(r)+\sigma_{k}^{*}(r) \leq r^{k} d^{*}(r)$ with equality if and only if r is a prime power.

Further, using the fact that

$$
\phi_{\hat{k}}^{*} \oplus d *=\sigma_{\hat{k}}^{*},
$$

we also obtain
Theorem 2: $\phi_{k}^{*}(r)+d^{*}(r) \leq \sigma_{k}^{*}(r)$ with equality if and only if r is a prime power.

We remark that Theorem 2 is analogous to the inequality involving ϕ, d, and σ, see [4], [6].

Using the multiplicativity of ϕ_{k}^{*} and σ_{k}^{*}, one could also prove
Theorem 3: For $k \geq 1$,

$$
\frac{1}{\zeta(2 k)}<\frac{\sigma_{k}^{*}(r) \phi_{k}^{*}(r)}{r^{2}}<1
$$

where $\zeta(s)$ is the Riemann ζ-function.
Now, the AM-GM inequality yields
(1.9) $\frac{\sigma_{k}(r)}{d(r)} \geq r^{k / 2}$ (see [9])
and
(1.10) $\frac{\sigma_{k}^{*}(r)}{d^{*}(r)} \geq r^{k / 2}$.

The aim of this note is to establish a few more inequalities which come out as special cases of certain general inequalities found in [3] and [7].

Let

$$
\begin{aligned}
& 0<a \leq a_{i} \leq A \\
& 0<b \leq b_{i} \leq B
\end{aligned} \quad(i=1,2, \ldots, s)
$$

where $a_{i}, b_{i}(i=1,2, \ldots, s), a, A, b, B$ are real numbers. Then, from [7],

$$
\text { (1.11) } \frac{\left(\sum_{i=1}^{s} a_{i}^{2}\right)\left(\sum_{i=1}^{s} b_{i}^{2}\right)}{\left(\sum_{i=1}^{s} a_{i} b_{i}\right)^{2}} \leq \frac{(A B+a b)^{2}}{4 A B a b}
$$

Next, let

$$
0 \leq a_{1}^{(k)} \leq a_{2}^{(k)} \leq \cdots \leq a_{s}^{(k)} \quad(k=1,2, \ldots, m)
$$

Then, an inequality due to Tchebychef [3] states that:
(1.12) $\left(\frac{\sum_{i=1}^{s} \alpha_{i}^{(1)}}{s}\right) \cdots\left(\frac{\sum_{i=1}^{s} \alpha_{i}^{(m)}}{s}\right) \leq \frac{\sum_{i=1}^{s} \alpha_{i}^{(1)} \cdots \alpha_{i}^{(m)}}{s}$

The inequalities derived in Section 2 are essentially illustrations of (1.11) and (1.12).

2. Inequalities

Theorem 4: For $k \geq 0$,
(2.1) $\frac{\sigma_{k}(r)}{d(r)} \leq \frac{r^{k}+1}{2}$
and
(2.2) $\quad \frac{\sigma_{k}^{*}(r)}{d^{*}(r)} \leq \frac{r^{k}+1}{2}$.

Proof of (2.1): Let d_{1}, \ldots, d_{s} be the divisors of r. We appeal to (1.11) by taking $a_{i}=d_{i}^{k / 2}, b_{i}=d_{i}^{-m / 2}, A=r^{k / 2}, a=1, b=r^{-m / 2}, B=1$. Then

$$
\frac{\sigma_{k}(r) \sigma_{m}(r)}{r^{m}\left(\sigma_{(k-m) / 2}^{(r)}\right)^{2}} \leq \frac{\left(r^{k / 2}+r^{-m / 2}\right)^{2}}{4 r^{k / 2-m / 2}}
$$

or
(2.3) $\quad \frac{\left(\sigma_{k}(r) \sigma_{m}(r)\right)^{1 / 2}}{\sigma_{(k-m) / 2}^{(r)}} \leq \frac{1}{2 r^{(k-m) / 2}}\left(r^{(k+m) / 2}+1\right)$

Setting $m=k$ in (2.3), we obtain (2.1).
Similarly, by considering the unitary divisors of r, we arrive at (2.2).
In view of (1.9) and (1.10), we also have
Corollary:
(2.4) $\quad r^{k / 2} \leq \frac{\sigma_{k}(r)}{d(r)} \leq \frac{r^{k}+1}{2}$
and
(2.5) $\quad r^{k / 2} \leq \frac{\sigma_{k}^{*}(r)}{d^{*}(r)} \leq \frac{r^{k}+1}{2}$

Theorem 5: For $k, m \geq 0$,
(2.6) $\frac{\sigma_{k+m}(r)}{\sigma_{m}(r)} \geq r^{k / 2}$
and
(2.7) $\frac{\sigma_{k+m}^{*}(r)}{\sigma_{m}^{*}(r)} \geq r^{k / 2}$.

Proof of (2.6): Let d_{1}, \ldots, d_{s} be the divisors of r. We appeal to (1.12) with

$$
a_{i}^{(1)}=d_{i}^{k_{1}}, \ldots, a_{i}^{(m)}=d_{i}^{k_{m}}(i=1,2, \ldots, s)
$$

where k_{1}, \ldots, k_{m} are positive numbers.
Then,

$$
\frac{\sigma_{k_{1}}+\cdots+k_{m}(\Upsilon)}{s} \geq \frac{\sigma_{k_{1}}(r)}{s} \cdots \frac{\sigma_{k_{m}}(r)}{s}
$$

with $s=d(r)$. From (1.9), we obtain
(2.8) $\frac{\sigma_{k_{1}}+\cdots+k_{m}(r)}{\sigma_{k_{i}}(r)} \geq r^{\frac{1}{2} \sum_{j \neq i} k_{j}}$.

Writing $m=2$, we get

$$
\frac{\sigma_{k_{1}+k_{2}}(r)}{\sigma_{k_{2}}(r)} \geq r^{k_{1} / 2},
$$

which proves (2.6).
The proof of (2.7) is similar and is omitted here.
Remark: Inequalities (2.6) and (2.7) generalize (1.9) and (1.10), respectively.
In this connection, we point out that analogous to the inequality $\phi(r) d(r) \geq r[8]$, one could prove using multiplicativity of ϕ_{k}^{*} and d^{*} that
Theorem 6: For $k \geq 1$,
(2.9) $d^{*}(r) r^{k} \leq \phi_{k}^{*}(r)\left(d^{*}(r)\right)^{2} \leq r^{2 k}$ 。

The proof of (2.9) is omitted.

Acknowledgments

The authors wish to thank Professor J. Aczél for his suggestions on the presentation of the material and the referee for some valuable additional references and suggestions.

References

1. K. Chandrasekharan. Introduction to Analytic Number Theory. New York: Springer Verlag, 1968.
2. Eckford Cohen. "Arithmetical Functions Associated with the Unitary Divisors of an Integer." Math. Zeit. 74 (1960):66-80.
3. G. H. Hardy, G. E. Littlewood, \& G. Pólya. Inequalities. Cambridge, Mass.: Cambridge University Press, 1964.
4. A. Makowski. Problem 339. Elemente der Mathematik 13 (1958):115.
5. Jose Morgado. "On the Arithmetic Function $\sigma_{k}^{*} . "$ Port. Math. 23 (1964):35-40.
6. C. A. Nicol. Problem E 1674. Amer. Math. Monthly 72 (1965):186.
7. G. Pólya \& G. Szegö. Aufgaben und Lehrsätze aus der Analysis. New York: Springer Verlag, 1924.
8. R. Sivaramakrishnan. Problem E 1962. Amer. Math. Monthly 74 (1967):198.
9. C. S. Venkataraman \& R. Sivaramakrishnan. Problem 5326. Amer. Math. Monthly 72 (1965):915.
