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During their discussion of divisibility and congruence relations of the 
Fibonacci and Lucas numbers, Hoggatt & Bergum found values of n satisfying the 
congruences Fn E 0 (mod ft) or Ln E 0 (mod ft) . In this connection, Hoggatt & 
Bergum's research appears in Theorems 1, 3, 5, 6, and 7 of [4]. The present 
paper originated on the same lines in search of values of n that satisfy <$>(Fn) 
E 0 (mod ft) or (j)(Ln) E 0 (mod ft), where § is the totient function. Before 
going into the analysis of the problem, we state some results that will be 
quoted frequently. 

(a) (i) For ft > 2, cj)(ft) is even; (ii) if m\n9 then § (jn) |cj) (ft) ([3], pp. 140-41). 
(b) All odd prime divisors of L2n + \ are of the form 10m ± 1 ([4], p. 193). 
(c) Every Fn with ft > 12 and Ln with ft > 6 has at least one primitive prime 

divisor ([6], p. 15). 
(d) Let p be a primitive prime divisor of Fn (ft > 5 ) ; if ft = 5 (mod 10), then 

p E 1 (mod 4ft) ([6], p. 10). 
(e) A primitive prime divisor p of L 5 n with ft > 1 satisfies p E 1 (mod 10ft) 

([6], p. 11). 
(f) Let ft be odd and p an odd primitive prime divisor ofFn; if p = ±1 (mod 

10), then p E 1 (mod 4ft) ([1], p. 254). 
(g) Let p be an odd primitive prime divisor of Ln\ if p E ±1 (mod 1 0 ) , then 

p E 1 (mod 2ft) ([1], p. 255). 

We begin our discussion by proving the following theorem. 

Theorem 1: If n is an odd integer greater than 3, then 
(i) <K£W) = 0 (mod ft); 

(ii) <t>(F2n) = 0 (mod 2ft). 

Proof: Both results are true when ft = 5. Thus, we choose ft > 7. 

(i) Based on (b) and (c), we have the existence of at least one primi-
tive prime divisor p of Ln of the form 10/77 ± 1. Consequently, by (g) : 

(1) p E 1 (mod 2ft). 

Since p\Ln and <j)(p) E 0 (mod 2ft) is true from (1), we have, using (a), 

<\>(Ln) E 0 (mod 2ft) => <(>(£„) E °  (mod n) 

(ii) Since F2n = FnLn and $(Ln) = 0 (mod 2ft), we have 2n\$(F2n) . 

Note: From the above, with odd ft > 3, $(Ln) = 0 (mod 2ft) and $(F2n) = 0 (mod 
4ft) are both true. The second part follows from [5]. 

Corollary: If n is odd, n > 3, and 3|ft, then 4ft|(f)(Ln). 

Proof: By Lemma 1 of [4] (p. 193), 4 \Ln. From Theorem 1, p\Ln, where p = 1 
(mod 2ft); consequently, by (a), $ (4p) | cf> (Ln) . This proves our result. 

In regard to Fibonacci numbers with even subscripts, we prove the following 
theorem. 

Theorem 2: The congruence §(F2N) E 0 (mod 2/1/) is true for all positive integers 
N, except when N = 1, 2, 3, 4, 8, 16. 
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Proof: It is easy to verify that, for /¥ = 1, 2, 4, 8, 16, the congruence (̂î /j/) 
E N (mod 2/1/) holds and, for N = 3, the result (|>CF6) E 4 (mod 6) is true. Ex-
cluding these values, we complete the proof by considering the following cases: 

Case 1. If N is odd and greater than 3, the result follows from Theorem 1. 

Case 2. For even values of /!/, we discuss the proof in two parts: 

Part 1. Let N = 2n~l, n > 6. For n = 6, the result 

<K*W E °  (mod 64) 
is true (see [1], App. Table). For n > 6, we apply induction 
on n. 
§(F2n) = 0 (mod 2n) is true by -inductive hypothesis. 

(j>(L2*) E 0 (mod 2) is true by (a), and 

$(F2n+i ) = cf) (F2n ) cj) (L2„ ) ; therefore, 

(K̂ V: + 1 ) E °  (mod 2n + 1 ) . 
Part 2. Let N = 2n~lt, where n > 1, t is odd, £ > 1, and 2/1/^6. If 

n = 1, see Theorem 1. If n > 1, we use induction on n. 

Fzn+imt = F
2 \ t L 2 \ t ; LZn \L2^t a n d L2n & F2n.t 

are relatively prime; therefore, 

§(F2^t) • cj)(L2n) divides <j)CF2,: + i.t) . 

Repeating the argument of Part 1 above, we observe that 

<t>(F2nmt) = 0 (mod 2n-t) 

is true by the inductive hypothesis, 

<j>(£2„) E 0 (mod 2) 

follows from (a). Hence, the proof is complete. 

For examination of Lucas numbers with even subscripts, it is important to 
study the values of §(L2n) . By verification, it follows that §(Lzn) ~ 0 (mod 
2n) is true when n = 1, 5, 6, 7, 8 and false for n = 2, 3, 4. It remains an 
open question whether §(Lnn) = 0 (mod 2n) would be true for all n > 5 or for 
infinitely many n or only for a finite number n. 

Since 2n = 0 (mod 4) is true for n > 5, every odd prime divisor of L^n is 
one of the forms 40/?7 + 1, 40/7? + 7, 40/7? + 9, 40/77 4- 23 ([6], p. 11). In [7] it 
is proved that L^n = 3 (mod 4) and, hence, contains an odd number of primes of 
the form 4/77 + 3. 

In view of this, we conclude that, if L^. is the product of an even number 
of primes, then it must contain at least one prime p of the type 40/77 + 1 or 40/77 
+ 9. If this prime p is primitive, then p E 1 (mod 2n + 1) by (g) . In this 
case, 2 |cj)(p) and, consequently, cj)(L2n) E 0 (mod 2n) is true. 

Based on this discussion, we are led to make the following conjecture. 

Conjecture: There may exist infinitely many n such that cf)(£20 = 0 (mod 2n) is 
true. 

It is interesting to note that the following allied result holds. 

Theorem 3: For all positive integers n, <j>(£2* + 1) = 0 (mod 2n) is true. 

Proof: Using the Binet form, it is easy to see that 

L2n + l + 1 = (L2n + l)(L2n - 1). 
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Since (L2?, - 1) i s always even, i t fo l lows by i n d u c t i o n t h a t L?, + 1 E 0 (mod 
2n + 1) i s always t r u e . Hence, 2n = cj)(2n + 1 ) d i v i d e s c(,(L2„ + 1 ) . 

Some s p e c i a l cases a r e d i s cus sed in the fo l lowing theorems. 

Theorem 4: I f n i s a p o s i t i v e i n t e g e r , the fo l lowing congruences ho ld : 
( i ) <KL5„) E 0 (mod 10n) . 

( i i ) (t)(^5w) = 0 (mod 80n) ; rc i s odd, n > 1. 
Proo/"; 

(i) The proof follows from (c) and (e) and the fact that (j)(L5) E 0 (mod 
10) when n = 1. 

(ii) Since, for odd n, 5n = 5 (mod 10) is true when n > 1, by (c) and (d) 
there exists a primitive prime divisor p of F$n satisfying p E 1 (mod 
20n) . Since 5 and p are both relatively prime factors of F5n, 80n 
divides (f>(F5n) by (a). 

Theorem 5: 
(i) If /c > 2, then (K^sO E 0 (mod 16- 5 2 k _ 1 ) . 
(ii) If n = 2P + 1 '3m'5fc with r > 1, m > 1, k > 1, then cf) (F„) = 0 (mod 4n) . 

Proof: 
(i) From [4], p. 192, we have 5k\F^k. Since 5k E 5 (mod 10) is true, by 

(d) there exists a primitive prime divisor p satisfying p E 1 (mod 
4.5^). As 5k and p are relatively prime, $(5*-) • cf)(p) divides $(Fk). 

(ii) By [4], p. 192, we have n\Fn. This, along with Theorem 2, completes 
the proof. 

A Final Note: It is desirable to shed some light on the cases not discussed 
thus far and on the difficulties encountered in the generalization process. 
This is done by showing that the following two congruences are not valid in 
general for a positive integer n, 

(i) cj)(L2n) E 0 (mod In) 
(ii) <KF2« + l) E °  <>od ln + !) 

In regard to (i), we observe that if, for a composite m, Lm is prime, then m 
must be of the form 2t, where t > 2 (see [2]). Consequently, with t > 2 when 
Lyt is prime, which is primitive, we have <^{L^t) = L^t - 1. 

As proved in Theorem 3, L^t = -1 (mod 2t); therefore, we can conclude that 
(j)(L2t) E -2 (mod 2t). Thus, it follows that cJ)(L2t) ^ 0 (mod 2t) when L2t is 
prime and t > 2. Besides this, there may exist other Lucas numbers connected 
with this which may not satisfy the congruence of (i) . One such illustration 
will be the members of the type L2

t
ap, where p is an odd prime and t > 1. We 

observe that, for n < 50, §(Lln) f 0 (mod In) when n = 2, 4, 8, 11, 12, 17, 26, 
29, 37, 46. In view of this, we conclude that the congruence relation in (i) 
is not true in general. 

For case (ii), we observe that for odd n9 if Fn is prime p, where p E ±3 
(mod 10), then p E (2w - 1) (mod 4n) (see [1], p. 254). 

Thus, under this hypothesis of primality, <\>(Fn) = -2 (mod n) . It is easy 
to see that Fn is a prime of this type when n = 7, 13, 17, 23, 43, 47, 83. It 
is interesting to observe that if, for a prime subscript n, Fn is the product 
of two primitive primes each E ±3 (mod 10), then §(Fn) E 4 (mod n). This is 
true when n = 59, 61, 71, 79, 101, 109. 

Based on this, there may exist Fibonacci numbers of odd subscripts n, where 
n is composite, which may also not satisfy relation (ii). One such example is 
^161' where (j>(-̂ i6l) E 16 (mod 161). Consequently, we are justified to say that 
the congruence relation of (ii) is also not true in general. 
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