PARTITIONS WITH "M(a) COPIES OF a "

E. E. Guerin

Seton Hall University, South Orange, NJ 07079
(Submitted September 1988)
In [1], Agarwal \& Andrews studied partitions with " α copies of α," and in [2], Agarwal \& Mullen studied partitions with " $d(\alpha)$ copies of a " (where d is the divisor function). In this note, partitions with " $M(\alpha)$ copies of a " are considered; the maximum exponent function, M, is defined by

$$
M(\alpha)=\max \left(e_{1}, \ldots, e_{r}\right)
$$

if the integer $\alpha>1$ has canonical prime-power form $a=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}$, and $M(1)=$ 1.

Define L to be the set of ordered pairs (a, b) of positive integers with $1 \leq b \leq M(\alpha)$. We say π is a partition of n with $M(\alpha)$ copies of α if π is a finite ordered collection $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{k}, b_{k}\right)$ of elements of L such that $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}=n$ and, for $1 \leq i \leq j \leq k, \alpha_{i} \geq a_{j}$ with $b_{i} \leq b_{j}$ if $a_{i}=a_{j}$. If we replace (α, b) in L by a_{b}, the partitions of n with "M(α) copies of $a^{\prime \prime}$ for $n=1,2,3,4$, can be represented, respectively, by

$$
\begin{aligned}
& 1_{1} ; 2_{1}, 1_{1}+1_{1} ; 3_{1}, 2_{1}+1_{1}, 1_{1}+1_{1}+1_{1} ; \\
& 4_{1}, 4_{2}, 3_{1}+1_{1}, 2_{1}+2_{1}, 2_{1}+1_{1}+1_{1}, 1_{1}+1_{1}+1_{1}+1_{1} .
\end{aligned}
$$

For the positive integer n, let $m(n)$ denote the number of partitions of n with "M(α) copies of $\alpha . "$ As in [3, Ch. 1] and [2], a generating function for such partitions is

$$
1+\sum_{n=1}^{\infty} m(n) q^{n}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-M(n)} .
$$

This is an immediate consequence of the following theorem [3, Th. 1.1]:
If H is a set of positive integers, if "H" is the set of partitions with parts in H, and if $p(" H$ ", n) is the number of partitions of n with parts in H, then for $|q|<1$,

$$
\sum_{n \geq 0} p\left({ }^{\prime \prime} H^{\prime \prime}, n\right) q^{n}=\prod_{n \in H}^{\infty}\left(1-q^{n}\right)^{-1}
$$

The factor $\left(1-q^{n}\right)^{-1}=1+q^{n}+q^{n+n}+\cdots$ is replaced by

$$
\begin{aligned}
\left(1-q^{n}\right)^{-M(n)}= & \left(1+q^{n}+q^{n+n}+\cdots\right)^{M(n)} \\
= & \left(1+q^{n_{1}}+q^{n_{1}+n_{1}}+\cdots\right)\left(1+q^{n_{2}}+q^{n_{2}+n_{2}}+\cdots\right) \\
& \cdots\left(1+q^{n_{M(n)}}+q^{n_{M(n)}+n_{M(n)}}+\cdots\right)
\end{aligned}
$$

for $n_{i}=n(1 \leq i \leq M(n))$; thus, the number of partitions of n with ' $M(\alpha)$ copies of $a^{\prime \prime}$ is counted. For example, $m(4)$ is the coefficient of q^{4} in

$$
\begin{aligned}
& (1-q)^{-1}\left(1-q^{2}\right)^{-1}\left(1-q^{3}\right)^{-1}\left(1-q^{4}\right)^{-2} \\
& =\left(1+q^{1_{1}}+q^{1_{1}+1_{1}}+q^{1_{1}+1_{1}+1_{1}}+q^{1_{1}+1_{1}+1_{1}+1_{1}}+\cdots\right)
\end{aligned}
$$

$\cdot\left(1+q^{2_{1}}+q^{2_{1}+2_{1}}+\cdots\right)\left(1+q^{3_{1}}+\cdots\right)\left(1+q^{4_{1}}+\cdots\right)\left(1+q^{4_{2}}+\cdots\right)$
for $1_{1}=1,2_{1}=2,3_{1}=3,4_{1}=42=4$; since

$$
q^{4}=q^{4_{1}}=q^{4_{2}}=q^{3_{1}+1_{1}}=q^{2_{1}+2_{1}}=q^{2_{1}+1_{1}+1_{1}}=q^{1_{1}+1_{1}+1_{1}+1_{1}}
$$

then $m(4)=6$, and the exponents

$$
4_{1}, 4_{2}, 3_{1}+1_{1}, 2_{1}+2_{1}, 2_{1}+1_{1}+1_{1}, 1_{1}+1_{1}+1_{1}+1_{1}
$$

are the six partitions of 4 with "M(α) copies of α."
If $p(n)$ is the number of unrestricted partitions of n, then

$$
\begin{aligned}
1+\sum_{n=1}^{\infty} m(n) q^{n} & =\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-1} \prod_{\substack{n>1 \\
M(n)>1}}(1-q)^{-(M(n)-1)} \\
& =\left(\sum_{n=0}^{\infty} p(n) q^{n} \prod_{\substack{n>1 \\
M(n)>1}}\left(\sum_{i=0}^{\infty} q^{i n}\right)^{M(n)-1}\right.
\end{aligned}
$$

Note that $M(n)=p(n)$ if $n=1,2,3$. Some values of $m(n)$ are shown below.

$$
\begin{array}{rrrrrrrrrrrrrrrrr}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
m(n) & 1 & 2 & 3 & 6 & 8 & 13 & 18 & 30 & 41 & 60 & 82 & 121 & 162 & 226 & 302 & 422
\end{array}
$$

A recurrence formula for $m(n)$ is now given. Let $[r]$ denote the greatest integer less than or equal to the real number r; let

$$
\left(\sum_{i=0}^{\infty} q^{i}\right)^{k}=\sum_{v=0}^{\infty}(k)_{v} q^{v},
$$

where k is a positive integer [so that $(k) v$ is the coefficient of $q v$ in the expanded form of $\left.\left(1+q+q^{2}+q^{3}+\ldots\right)^{k}\right)$; and let s_{i} equal the $i^{\text {th }}$ nonsquarefree positive integer (with $s_{1}=4, s_{2}=8, s_{3}=9, s_{4}=12, s_{5}=16$, and so forth). Then, if $n \geq 4$,

$$
m(n)=\sum_{i=1}^{j} m_{n, s_{i}}
$$

where j is the unique positive integer such that $s_{j} \leq n<s_{j+1}, m(0)$ is defined equal to 1 ,

$$
m_{n, 4}=p(n)+\sum_{i=1}^{[n / 4]} p(4-n i)
$$

for $n \geq 4$, and

$$
\begin{aligned}
m_{n, s_{j}}= & \left(M\left(s_{j}\right)-1\right)_{\left[n / s_{j}\right]} m\left(n-s_{j}\left[n / s_{j}\right]\right) \\
& +\sum_{i=1}^{\left[n / s_{j}\right]-1}\left(M\left(s_{j}\right)-1\right)_{i}\left(\sum_{v=1}^{j-1} m_{n-s_{j} i, s_{v}}\right)
\end{aligned}
$$

for $n \geq s_{j}>s_{1}$. For example,

$$
\begin{aligned}
m(16)= & m_{16,16}+m_{16,12}+m_{16,9}+m_{16,8}+m_{16,4} \\
= & (M(16)-1)_{1} m(0)+(M(12)-1)_{1} m_{1}(4)+(M(9)-1)_{1} m(7) \\
& +(M(8)-1)_{2} m(0)+(M(8)-1)_{1} m_{8,4} \\
& +(p(16)+p(12)+p(8)+p(4)+p(0)) \\
= & (3)_{1} \cdot 1+(1)_{1} \cdot 6+(1)_{1} \cdot 18+(2)_{2} \cdot 1 \\
& +(2)_{1}(p(8)+p(4)+p(0))+(231+77+22+5+1) \\
= & 3+6+18+3+56+336 \\
= & 422 .
\end{aligned}
$$

Combinatorial interpretations of partitions with "M(α) copies of α " can be stated in terms of plane partitions [3, Ch. 11] and factorization patterns [2]. In [4], Mitchell considers plane partitions in which the number of parts equal to $j \geq 1$ in any row is not less than the number of parts equal to j in the next row; we designate these plane partitions as Mitchell plane partitions (MPP's). Each MPP of a positive integer n can be written uniquely in an "identical-element-column format" (ICF) of the type

$$
\begin{array}{llll}
\alpha_{11} & a_{21} & \cdots & a_{r 1} \\
\vdots & \vdots & & \vdots \\
a_{1 t_{1}} & \alpha_{2 t_{2}} & \cdots & a_{r t_{r}}
\end{array}
$$

with

$$
\sum_{i=1}^{r} \sum_{j=1}^{t_{i}} a_{i j}=n
$$

and

$$
\alpha_{i 1} \geq \alpha_{i+1,1}(i=1, \ldots, r-1)
$$

with

$$
\alpha_{i 1}=\cdots=\alpha_{i t_{i}}
$$

for each $i=1, \ldots, r$, and such that, if $a_{i 1}=\alpha_{k 1}$ for $i<k$, then $t_{i} \geq t_{k}$. If $n>1$, then $m(n)$ is the number of ICF's of the following types:
I. $a_{11} a_{21} \ldots a_{r l}\left(w i t h \sum_{i=1}^{r} a_{i 1}=n\right.$ and $a_{i 1} \geq a_{i+1,1}(i=1, \ldots, r-1)$; $t_{1}=\cdots=t_{r}=1$. LCF's of this type are unrestricted partitions of n.)
II. ICF's formed by first replacing one or more of any nonsquarefree $\alpha_{i l}$ ($i=$ $1, \ldots, r$) in I, as indicated in (i) and (ii) below, and then rearranging these columns if necessary. (If $\alpha_{i l}$ is squarefree, then $\alpha_{i l}$ is the only acceptable form.)
(i) If $a_{i l} \neq a_{k l}$ for $k \neq i$, and p is the smallest prime such that $p^{M\left(a_{i 1}\right)}$ divides $\alpha_{i l}$, then acceptable replacement forms for $\alpha_{i l}$ are those with $\alpha_{i 1} / p^{v}$ identical column entries, each entry $p^{v}\left(v=1, \ldots, M\left(\alpha_{i}\right)-1\right)$. If $\alpha_{i 1}=a_{i+1,1}=\ldots=a_{i+w, 1}, a_{i 1} \neq a_{k l}$ if $k \neq i, i+1, \ldots, i+w$ ($1 \leq i<i+r \leq r$), then acceptable replacements are those with one or more of $a_{i l}, \ldots, a_{i+w, l}$ replaced by replacement forms specified in (i) under the condition that entries in the column replacing $\alpha_{b l}$ are greater than or equal to entries in the column replacing $\alpha_{c l}$ if $c>b(i \leq b<c \leq i+w)$.
Denote the set of ICF's of n of these types by $\operatorname{MICF}(n)$, and $m(n)$ is the order of the set $\operatorname{MICF}(n)$.

Also, $m(n)$ is the number of restricted "maximum-exponent" factorization patterns (MFP's) of the type $b_{1}^{a_{1}} \ldots b_{r}^{a_{r}}$ with

$$
n=b_{1} a_{1}+\cdots+b_{r} a_{r}
$$

and

$$
b_{1}=\cdots=b_{k_{1}}>b_{k_{1}+1}=\cdots=b_{k_{2}}>\cdots>b_{k_{c-1}+1}=\cdots=b_{k_{e}}
$$

with

$$
k_{c}=r
$$

and

$$
\alpha_{1} \geq \ldots \geq a_{k_{1}}, a_{k_{1}+1} \geq \ldots \geq \alpha_{k_{2}}, \ldots, \alpha_{k_{c-1}+1} \geq \cdots \geq \alpha_{k_{c}},
$$

and in which, for $b_{v} a_{v}=w(1 \leq w \leq n)$ and for $v=1,2, \ldots, r, b_{v}^{a_{v}}$ has the following specified form:
(1) If w is a squarefree positive integer, then $b_{v}^{a_{v}}=w^{1}$;
(2) If w is not squarefree, and p is the smallest prime such that $p^{M(w)}$ divides w, then $b_{v}^{a_{v}}=w^{l}$ or $b_{v}^{a_{v}}=\left(p^{t}\right)^{\left(w / p^{t}\right)}(t=1, \ldots, M(n)-1)$.
To illustrate, $m(8)=30$ and the elements of MICF (8) are

8	2	4	71	62	611	53	521	5111	44	42	22	431	321	422	222
2	4								2	22		2		2	
2															
2															

```
PARTITIONS WITH "M(a) COPIES OF \(a\) "
```

```
4211
```

4211
221111 2111111 11111111

```
221111 2111111 11111111
```

The element 321 (obtained from 231 by a column rearrangement) has plane partition form 321 and corresponds to the MFP $3^{1} 2^{2} 1^{1}$.

For any positive integer n there is a bijection between the set MICF(n) and the set of MFP's of n. Also, a bijection between the members of the multiset $\left\{1_{1}, 2_{1}, 3_{1}, 4_{1}, 4_{2}, \ldots, n_{1}, \ldots, n_{M(n)}\right\}$ and the set of MFP's of n is indicated by 1_{1} corresponding to $1^{1}, 2_{1}$ to $2^{1}, 3_{1}$ to $3^{1}, 4_{1}$ to $2^{2}, 42$ to $4^{1}, \ldots$, and n_{1} to n^{1} if $M(n)=1$, or n_{1} to $p^{n / p}$, ..., $n_{v(n)-1}$ to $\left(p^{M(n)-1)(n / p::(n)-1)}\right.$, $n_{M(n)}$ to n^{1} if $M(n)>1$ and p is the smallest prime such that $p^{M(n)}$ divides n.

References

1. A. K. Agarwal \& G. E. Andrews. "Rogers-Ramanujan Identities for Partitions with 'N Copies of $N .{ }^{\prime \prime \prime}$ J. Combin. Theory, Ser. A 45 (1987):40-49.
2. A. K. Agarwal \& G. L. Mullen. "Partitions with 'd(α) Copies of a. " J. Combin. Theory, Ser. A 48 (1988):120-135.
3. G. E. Andrews. "The Theory of Partitions." Encyclopedia of Mathematics and Its Applications, Vol. 2. Reading, Mass., 1976. (Rpt. London-New York: Cambridge University Press, 1984.)
4. D. J. B. Mitchell. "Generating Functions for Various Sets of Solid Partitions." Ph.D. diss., Pennsylvania State University, 1972.
