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1. Introduction 

In this paper we introduce the Vinogradov [8] inversion theorem for func-
tions defined on a finite partially ordered set. Our inversion theorem reduces 
to that by Vinogradov in the case of positive integers. For material relating 
to Vinogradovfs inversion theorem, we refer to [2], [3], and [4]. 

As an example of our generalized Vinogradov inversion theorem we consider 
an inversion theorem relating to arithmetical functions and regular convolu-
tions. As applications, we give expressions for certain restricted sums of 
Fibonacci and Lucas numbers. Special cases of the applications can be found in 
[4]. 

2. A Generalized Vinogradov Inversion Theorem 

Let (P , C) be a locally finite partially ordered set. A complex-valued 
function f on P x P is said to be an incidence function of (P, c) if f(x, y) = 
0 unless x C y. We denote by J(C, P) the set of all incidence functions of (P, 
C) . The convolution of /, g E J(c, P) is defined by 

(fog)(x, y) = J2 f(x, z)g(z, y). 
x cz cy 

The inverse of / E P(C, P) is defined by 
f° rl = rlof = 6, 

where &(x, x) = 1 and 6(x9 y) = 0 if x * y. The inverse of £, defined by £ (x, 
y) = 1 whenever x c y, is denoted by u and is called the Mobius function of 
(P, c). 

Now we are able to give our generalized Vinogradov inversion theorem. The 
original Vinogradov inversion theorem is reproduced in the remark of Theorem 2 
in Section 3. 

Theorem 1: Suppose (P, c) and (P, <) are locally finite partially ordered 
sets. Let fx be a complex-valued function of x E P and let dx be a function of 
x e P into P. Then, for all a, b e P, 

E fx = £ ^a* *) £ /*» 
a <x <b a cz a <x <b 

dx = a z c dx 

where u is the Mobius function of (P, c). 
Proof: We have 

X) fx = J2 fx&(a> dx) = Yl fx E P(^ ' ^) = 'Epfa> 2) E j ^ , 
a<x<2? a <x <b a <x <b a cz cdx a cz a < x <b 

dx=a serf, 
which was required. 
Remark: We note that Theorem 1 implies the classical inversion theorem for 
incidence functions of (P, c) stating that if, for all a, b E P, 
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g(a, b) = X) f(z, b), 
ac z cb 

then 

f(a, b) = X! v(a> z)g(z, b); 
aczcb 

that is 

(1) f(a, b) = £ u(a, a) X f(y, b) . 
aczcb zcy cb 

In fact, let a, 2? e P with a c b. We assume x c y -> x < y for all x, y e P and 
denote 

{x e P: a c x c b] = {xx(=a), x2s ..., xm(=b)}9 

{x e P: a < x < b} = {yi(=a), y2> ..., yn(=b)}, m< n. 
Then we take 

ui/j = <2j dy2
 = %2' * ' ' ' £/m = ' dym + i = . . . = ^ ^ = Q5 

where c <£ b, and /x = f(dx> b) . (If there does not exist an element c E P such 
that c <£ b, then we consider the set P u {<?}.) In this case, 

a <x <b a <x <b 
and dx =a dx =a 

£u(a, s) L f = L u(a, 2) X /Wx> W = Z u(a, s) £ jfQ/» &) • 
a c z a<x<b^ acz a<x<b acz zcycb 

zcdx z cdx 

Thus, by Theorem 1, we a r r i v e a t ( 1 ) . 
3. Regular Arithmetical Convolutions 

Let A be a mapping from the set IN of positive integers to the set of sub-
sets of IN such that, for each n E M, A (n) is a subset of the set of positive 
divisors of n. Then the ̂ -convolution of two arithmetical functions f and g is 
defined by 

(f °A g)W = Z f(d)g(n/d). 
deA(n) 

Narkiewicz [6] defined an ̂ -convolution to be regular if: 

(a) the set of arithmetical functions forms a commutative ring with unity 
with respect to the ordinary addition and the ̂ -convolution; 

(b) the ̂ -convolution of multiplicative functions is multiplicative; 
(c) the function E9 defined by E(n) = 1 for all n G IN, has an inverse \iA 

with respect to the ,4-convolution, and \iA(n) = 0 or -1 whenever n is a 
prime power. 

The inverse of an arithmetical function f such that f(l) * 0 with respect to the 
^.-convolution is defined by 

/ -A r 1 = r 1 °A f = Eo> 
where EQ(l) = 1 and E0(n) = 0 for n > 1. 

It can be proved (see [6]) that an ̂ -convolution is regular if and only if 

(i) A(mn) = {de:d e A(m), e e A(n)} whenever (m, ri) = 1, 
(ii) for each prime power pa > 1 there exists a divisor t = tA(pa) of a 

such that 

A(pa) = {1, pK p2t, ..., pvt], 
where vt = a, and 

Aipi*) = {1, pt
9 p2t , ..., pu}, 0 < i < v. 
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(-1 if 

^ ( p a ) = t o if 

For example, the Dirichlet convolution D, where D (n) is the set of all posi-
tive divisors of n, and the unitary convolution U, where 

U(n) = {d > 0:d\n, {d, n/d) = 1}, 

are regular (see [1]). In this paper we confine ourselves to regular convolu-
tions . 

A positive integer n is said to be ^.-primitive if A(n) = {1, n]. The gen-
eralized Mobius function \±A is the multiplicative function given by (see [6]) 

-1 if pa (>1) is ̂ -primitive, 

Lf pa is non-^-primitive. 

For a positive integer k, we define 

Ak(n) = {d > 0:dk e A(nk)}. 

It is known [7] that the ^-convolution i-s regular whenever the /1-convolution 
is regular. The symbol (a9b)A k denotes the greatest kth power divisor of a 
which belongs to A(b) . In particular, denote (a,b)A 1 = (a,b)A. Then 

(a, b)D = (a, b), 
the greatest common divisor of a and b. 

Let A be a. regular arithmetical convolution. Then we define the relation c 
on the set M of positive integers by 

m c n <̂> m E A[n) 
and denote by JNA the resulting locally finite partially ordered set. 

Let f be an arithmetical function, that is, a complex-valued function on3N. 
Then we can associate with f an incidence function fr of IN̂  defined by 

(f(n/m) if m e A(n), 
f'(m, n) = \ 

\ i 

The mapping f -> fr is one-one and 

(2) (/'o g')(m, n) = (foA g)<(m, n) 

(see [5], Ch. 7). Plainly 

(£70)f(w, ri) = 6(/??, n), E'(m, n) = £,(m, n) . 

Therefore, by (2), 

(\iA) r(m, n) = \i(m, n) . 
Now we are in a position to state Theorem 1 for regular convolutions. Let-

ting < be the natural ordering on IN, we can write 

Theorem 2: Let f^ be a complex-valued function of i e IN and let d^ be a func-
tion of t E I into M. Then, for all n e IN, 

i = 1 cZ > 1 £ = 1 
di = 1 deA(di) 

Remark: If A = D in Theorem 2, we obtain the original Vinogradov inversion 
theorem. 

Corollary: Let fi be a complex-valued func t ion of i € IN. Then 

A /i = S MA(d) £ /v. 

Proof: Replace A by ^ and take ^ = ((i, ̂ fc)̂ l, fc )1/k in Theorem 2. Since de 
Ak(((^y nk)Afk)1/k) if and only if d e ^fe(n), £Zfc|i, we obtain the Corollary. 
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4. Appl ica t ions to Fibonacci and Lucas Number s 

Let Fi be the i t h F ibonacc i number, t h a t i s , F\ = 1, F2 = I, Fn = Fn_i + Fn_2 
(ft > 3 ) , and l e t L^ be the £th Lucas number, t h a t i s , L]_ = 1, L2 = 3 , Ln = Ln_i + 
£„-2 (n > 3 ) . 
Theorem 3: Let ,4 be a r e g u l a r convo lu t ion and k E IN. Then, for each n E M , 

\d-, + dK - {-DdkFmdk - Fdk 
(3) Z ^ = Z vA,id)- ,k 

j-l d e ^ W ^ L,k - (-1)** - 1 
(4) Z Lv = £ i^.W): 

where w = [n/dk], the greatest integer in n/d^. 
Proof: Plainly, 

£ pi = £ . ^ • 
t- = 1 1 < i <n/dK 

Then, using the formulas 

1 

where 

Fn = j=(on - 3n), Ln = an + 3n, 

a = -|(1 + /5), 6 = |(1 - /5), 

we obtain, after some computations, 

F ->< y< ~ (~l)dk F jk ~ F-i, L maK + dK v J L mdK L dK 

Z F, = 
dK\z a 

Thus, applying the Corollary of Theorem 2, we get (3). The proof of (4) goes 
through in a manner similar to that of (3). 

Corollary: Let A be a regular convolution. Then, for each n E IN, 

Z f; = Z y4(d) 
,d, Fn + d ~ (-VaFn - Fd 

«;i , d€.4(«) " L*- (-Dd - 1 
(t, n )# = 1 

A Li = Z M d > 7 - T T ^ — ; • 

Theorem 4: Let A be a r e g u l a r convo lu t ion and k E IN. Then, for each n E IN, 

A _ Fmdv + „ ~ i-DdkFmdk ~ F k 
(5) , Z F. - Fn + 2 - £ P , ^ ) ^ - ( _ n ^ x " I-

n 

(6) Ex
 Li 

= W - L ^ ,W) - — 1 ; 3, 
deAk(n) - L

d< ~ ( -1 )^ " 1 

where /?? = [n/d ] . 
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Proof: We have 
n n n 

X, Fi = £ h - . £ Fi • 
>-l ^ = 1 ^ = 1 

(̂ .ŵ .k >l d'^A.k = 1 

Therefore, applying (3) and the identity 
n 

12 Fi = Fn + 2 " 1» 
i= 1 

we obtain (5). Similarly, applying (4) and the identity 
n 

L Li = Ln+2 ~ 3' 
i = 1 

we get (6). 
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