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Introduction 

Two classical representations for real numbers in terms of integer "digits" 
are the series representation of Sylvester (1880) and the product representa-
tion of Cantor (1869): If A denotes any real number 04 > 1 in the product 
case), then these representations, respectively, take the forms: 

1 1 1 
A = a0 + — + — + — + . -., a- em, 

u a\ a2 £3 ^ 

where a\ ^ 2, a^ + i > a^(a^ - 1) + 1 for i > 1, 

and A = 2k f\ (l + — I , a- e ]N, 
i= 1 V &il % 

where k E IN, a\ > 2, â  + 1 > a2 for i > 1. 

For further details, see, for example, Perron [3]. 
Far more familiar to us than the above is of course the radix or decimal-

type representation for A to the base q, where here and throughout, q denotes 
an integer greater than or equal to two. One of the advantages of this latter 
representation over the first two, is that the digits "a^" all lie in the 
finite set {0, 1, ..., q - 1} which allows us to conveniently express our 
decimal expansion base q in the positional notation 

A = anan-i ... a\a§ • a_ia_2&-3 ••• • 

It seems therefore a natural question to ask whether we can derive a further 
product representation for a real number A > 1 in the radix form 

A = 11 (l + — , where m e IN, an- e {0, 1, . . . , q - 1}. 

The paper is set out as follows. In Section 2, we derive a more general 
type of radix product representation for real numbers 1 < A < 2. The main 
interest of the radix product representation is that, like ordinary decimals 
(base q), it depends only on digits belonging to the set {0, 1, ..., q - 1}, 
thus allowing us to express the radix product 

- n (i + ̂ ) A •" " a" 
q1 

as 0 * aiaiCi^ ... say, just as in the decimal case. Furthermore, as shown in 
the paper, the rate of convergence of the radix product is basically the same 
as that of the ordinary decimal expansion. It is true that the Cantor product 

A n(-s) 
converges more rapidly. However, by the same token, the Sylvester series 

converges far more rapidly than the ordinary decimal expansion. Furthermore, 
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due to the exponential growth of the integers a^ in Sylvester's and Cantor's 
representation they are unwieldy to use in practice and each "digit" a^ must, 
in turn, be represented in the decimal system, a drawback which is absent in 
the case of the radix product. In Section 3, we introduce an alternative, 
computationally simpler algorithm which allows the computation of the radix 
product digits from the leading digits of a certain sequence of ordinary q-
decimals. Finally, in Section 4, we investigate the possibility of an 
analogous radix product representation for real numbers 0 < A < 1. 

Throughout the paper, unless otherwise stated, lower case letters denote 
nonnegative integers. 

2. Radix Products in a Varying Scale 

Let q-^, q2, ... be an infinite sequence of natural numbers greater than 
one. Then, it is well known (see, e.g., Perron [3]) that every real number A 
has a generalized decimal expansion 

A = an + — + — — + — + 

where aQ = [A], 0 < ai < q^ - 1 for i > 1. 
Using the product algorithm below, we derive an analogous generalized prod-

uct representation: Let 1 < A E AI < 2. Then, recursively define, for n > 1, 

where / an \~l 

4 ^ - ( 1 % l g 2 . . . J A-
If An = 1, then stop the algorithm. This leads to 

Proposition 2.1: Let 1 < A < 2. Then A has a finite or infinite product rep-
resentation 

where the "digits" a^ satisfy 0 < a^ < qi - 1. 

Proof: First, a repeated application of the recurrence yields 

' = (i+a)(1+^.)... (1+
 aJL )An + l9 

\ ql!\ qlq1i \ qlq2 . . . qj 
if An * 1. Since 1 < Al < 2, 0 < al = [ (Ax - 1)^] < ql. Suppose now, induc-
tively, that Ai > 1 and 0 < ai < qt - 1 for i < n. From the definition 

we deduce that 

a^ an + 1 
1 + < An < 1 + n 

ql . . . qn qx . . . qn 

and it follows that 

1 < An + 1 < (1 +
 an + \ 1/(1 + . "" . ) =1 + « + l < (l 

< l +. l 
Thus, 

0 < an+1 = [{An+l - 1 ) ? 1 . . . qn+1] < qn+l, 
<?1 • • • <7„ 
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as required. Now, either A n = 1 for some n, or 

1 < Ay, < 1 H < 1 + -> 1 a s n ->• oo, f o r n > 1 . 
<7!<72 . . . <7n_i 2 " " 1 

The result follows. 
Of particular interest to us is the decimal-type product representation 

obtained by setting q, = q„ = q~ = ••• = cin in the above. Before discussing 
this case in some detail, we briefly mention one further special product repre-
sentation of interest, which arises from Proposition 2.1 by setting q = n + 1 
for n > 1. 

A-f[(l 
i= l \ 

Corollary 2.2: Every real number 1 < A < 2 has a "factorial" product represen-
tation 

a J 
1 + 

^=i V (i + 1)!, 

where 0 < a^ < i for % > 1. 
In the sequel, however, we shall confine our attention to the most inter-

esting case of Proposition 2.1, obtained by setting qn = q for all n > 1. 
Theorem 2.3: Every A > 1 has a finite or infinite radix product representa-
tion (base q) of the form 

A = I! (l + -f): = anam_l ... a^a2 * a_xa_2 . . . , 

where m 6 1, â ' e {0, 1, ..., q - 1}. 

Proof: It follows from Proposition 2.1 that we can represent every 1 < A < 2. as 

- n ( i + ^ : 
i= I v (?2 

y4 
qi 

A simple (nonunique) method of extending this product for 1 < A < 2 to every 
A > 1 is as follows: First, if A ' < 2q, then, for a suitable 0 < a Q < q - 1, we 
can write 

* ' - ( 1 + ^ ) 4 , 

where 1 < .4 < 2. Now apply the algorithm to A . Next, if A11 > 2q, then there 
exists m E IN such that 1 + qm < A" < 1 + qm + l. Thus, we can write 

, . ( l • - L A' 

where 1 < A r < (1 + qm + l) / (1 + qm) < q, and the product expansion for A " now 
follows from that of 1 < A ' < 2^. 

Remarks 2.4: Even in the case 1 < A < 2 the radix product representation base 
q is not necessarily unique. For example, to base 2, 

- 3 " ( ' • £ ) ( ' • £ ) ( ' + ? ) ( ' • ! . ) 
where the one-term expansion on the left follows from applying the algorithm 
directly to A = 1.5, while the algorithm applied to A = 1.2 = 1.5/1.25 yields 
the expansion on the right. 

Unfortunately, as these and other examples show, real numbers can have more 
than one expansion as a radix product subject only to the condition that the 
digits lie i n { 0 , 1, . . . , q - 1 } . However, the constructive algorithm at the 
start of Section 3 produces a unique choice for the digits di at each step. 
For the digits produced by this algorithm, it follows from the proof of Propo-
sition 2.1 that the following inequality holds for each n > 1: 
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qn o (1 + — 1 > i n ( l + ^ ) . 
Conversely, it can be shown that there is only one radix product expansion for 
a given 1 < A < 2 for which (*) holds for each n > 1. Thus, every 1 < A < 2 
has a unique radix product expansion 

A ^ n (I +24) 
s.t. for each i > 1, 

Furthermore, since the algorithm chooses the largest possible digit "a^" at 
each stage, in general, this radix product expansion will converge faster than 
any other not satisfying (*), and is thus the canonical expansion for A. 

In addition, rational numbers need not have finite representations as 
^-radix products. As a particular case of Euler's product identity 

i + —̂—r = fi (i + -^M> y e * » \y\ > i . y - i n= i \ z/z / 
wre h a v e , f o r any v € IN, 

4 = 1 + -J— = I 1 H + 
n = \ \ qr - 1 „Vi V q z - 1 

Note also that such 4 have recurring ordinary q-radix expansions of the form 
4 = 1.00... 01, where the period consists of v - 1 zeros followed by a one. In 
general, however, other recurring decimals base q need not have "nice" radix 
product representations, unlike the case above. 

3. An Alternative Radix Product Algorithm 

We can reformulate the general product algorithm of Section 2 in the case 
of a fixed base q, into the following computationally simpler form. It is easy 
to show that the new algorithm is equivalent to that of Section 2 in the case 
q, = q2 = ... = q, provided we replace any real number with recurring decimal 
expansion 

a q - I q - I n , _T 
A = 1 + — + ^—y- + l—-^ + -.., 0 < a < q - 1, s e l , 

qs qs + L qs+/L 

by the finite expression 

a + 1 
A = 1 + — . 

qs 

In this form the algorithm determines only the nontrivial digits (a^ > 0) in the 
radix product representation. 

If 1 < A < 2, let Ai = A. Then, if the unique decimal expansion of A (base 
q) is of the form 

A = 1 + -~- + . . . , l < f c 1 < < 7 - l i r 1 e N , 

then we can write 
bl 1 

A = 1 + —f- A' , where 1 < A' < 1 + — < 2. 
qr^ x x Z?x 

If 
bn 

A = 1 _| 1 . /] f 
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h a s a l r e a d y b e e n d e f i n e d w i t h 

i < K < l +ir * 2> 
un 

then define 
by, VK I K\-i( bn + 1 m 1 1 

= 1 + — — < 1 + —^-. 
q n + bn q~» 

It follows that we can write 
K + 1 

A = 1 + n L A r 

An + l L +
 qrn+1

 An + I> 

where rn + l > r n , I < bn + i < q - 1 and 

1 < A' , < 1 + T < 2. 
n+l bn+i 

If A'n = 1, let An+l = 1 and stop the algorithm. Then 

A-h- (1+^)4=... -A^JX^^ 
If the procedure does not terminate with some An+i = 1, then 

1 1 1 
0 <• i4„ + i - 1 < < < • • . < — -> 0 a s n -> °°. 

qrn + i - 1 cfn q" 
T h u s , l i m An+i = 1 , and h e n c e , 

i= l x q * / 
i f 

b, \ ( by, 
1 + 

q*'i / \ qx 

we a l s o h a v e 

/ bi 

A= { l + ^ A n + l)Pn 
and s o 

bn+l , A 2 

0 < A - p = — n l A r P < < 
U A ^ qrn+1

 An + \ t n < qrn + l - 1 <
 qn-

The a b o v e a r g u m e n t c a n t h e r e f o r e b e u s e d t o g i v e an a l t e r n a t i v e p r o o f of T h e o -
rem 2 . 3 a n d , i n a d d i t i o n , i f f o r A > 1 , 

p„ = ii (i + -V)> 
n = -m \ q / 

then the rate of approximation to A by the finite "decimal" Pn is given by 
A A 

0 < A - Pn < ^--r < — , n > 1. 

In order to appreciate how easily this algorithm can be applied in prac-
tice, we illustrate it with a numerical example. For convenience, we choose 
the base q equal to ten: Let A = Ax = 1.035124. Then 

Pi = 0 * 03, A2 = (1.03)-1(1.035124) = 1.004974..., 

P2 = 0 * 034, A3 = (1.004)-1(1.004974...) = 1.000970..., 

P3 = 0 * 0349, Ah = ... . 
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To conclude this section, we make a few comments about radix product "frac-
tions" base q, that is, radix products of the form 0 * ccia^a-^ . . . , 0 < a^ < 
q - I. It is clear from the above algorithms that any 1 < A < 2 has a repre-
sentation as a fractional radix product. (To obtain a product expansion for 
A = 2, we can apply the algorithm of Section 3 to A = 1.999...). However, 
fractional product representation also exists for certain real numbers greater 
than two. If we denote the largest such fraction (base q) by 

Eq = 0 * (q - l)(q - 1)..., 

then it follows from standard inequalities relating infinite series and prod-
ucts that 

i + £1^ri<e,<exp(E1^). 
n= I C[ \n= I q J 

which gives 2< Eq < e for every q. However, the actual value of Eq varies with 
q. In the table below, we list approximations for Eq for some small values of 
the base q. 

TABLE 1. The Largest Radix Product Fraction 
Corresponding to Given Bases q 

q 

2 
3 
4 
5 
6 
7 
8 
9 
10 

E? 

2.38423 
2.26971 
2.20963 
2.17207 
2.14619 
2.12719 
2.11263 
2.10110 
2.09172 

Note that the values of Eq listed correspond to those for the finite products 

A ( * + ^ ) 
for suitable values of k. If we denote such finite products by Eq(k), then 

e,- e,(fc).= eq(k)( ft {} + 3~^1) ~ l) 
x ̂  = K + 1 H ' 

<6,(e*p((q-l)n+j.) -l) <*(*«-*-!). 
With this as an upper bound for the error, large enough values of k were chosen 
for each of the entries q = 2, 3, ..., 10 to give Eq - Eq(k) < 10~5. Examina-
tion of Table 1 suggests that e^ is a decreasing function of q for q > 2, a 
fact that can be verified by considering the derivative with respect to q, of 
log Eq . Furthermore, using Theorem 5.7, in Hyslop [1] we see that the uniform 
convergence of the infinite series 

for q > 2, implies the uniform convergence of the product e , for q > 2, and it 
follows that lim Eq = 2. 

q + oo 
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4. Radix Product Expansions for Real Numbers Less than One 

One immediate product representat ion for 0 < A < 1 follows from the radix 
product expression for A~l > 1. Thus, if we have 

A' 
then 

A 

1 = . 0 (l + ^ ) > 0 < at < q - 1, 
% = -m \ q^/ 

n ( i + ^ y 1 - n ( i - - A i = -m \ <? " ' v = -m 

In particular, for .4 > 1/2, 

CD ^ = n (i - .a i V 
In this form, however, the product no longer has a denominator depending only 
on the base. This product does, however, suggest the possibility of represent-
ing every 0 < A < 1 in the form 

Unfortunately, it turns out that it is not possible to represent every 0 < 
A < 1 or even 1/2 < A < 1 in this manner. 

To see this, let {a^} be a sequence of real numbers with a^ E (0, 1) for 
every k. Then we deduce from Weierstrassfs inequality (see Mitrinovic [2], 
p. 210): 

k k 

n (1 - an) > 1 - X; a n , 
n =r n = r 

by taking limits that 

f\ (1 - an) > 1 - £ an. 
n = 2 n = 2 

Hence, 
11 (1 - an) > (l - £ a„)(l - a j > 1 - X an. 

w= 1 ' \ n= 2 / n=\ 

Applying this last inequality to p, = J~£ (X — ^ — ) , we obtain 
r = 1 \ ^ / 

1 i = l 

™ q - I 

Since p, is the smallest number that can be represented in the form 

n^i - | f ) . o < fli < q -1, 
it follows that there can be no such product representation for any 0 < A < p±> 
Similarly, the largest real number that can be represented in the form 

fl (l T ) , 0 < at < q - 1, ax *• 0, 

is p2 = 1 - (l/q), and the smallest real number that can be represented in the 
form 

a • 
^ ( l - -±)> 0 < ai < q - 1, ax = 0, 

is 

^-M-'-fr1)-
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Since the i n e q u a l i t y r e l a t i n g i n f i n i t e p r o d u c t s and s e r i e s y i e l d s p ~, > p9 t h e r e 
can aga in be no such produc t r e p r e s e n t a t i o n for any r e a l number p? > A > p9 . 
In g e n e r a l , s i n c e 

• nJ1 - V)> 1 - ̂  
t = 171 + I X H I <7 

there will be an infinite sequence of gaps in any representation system based 
upon products of this type. 

A consideration of Equation (1) suggests that, for 1/2 < A < 1, we can ob-
tain a product expansion with digits in {0, 1, ..., q - 1} and denominators 
independent of "a/' consisting of terms 

V q% + q) 
To obtain such expansions, we introduce the following algorithm: Let 

\ < A = Al < 1. 

Then recursively define, for n > 1, 

an = [U " An)(qn + q)]9 An * 1, 
where 

An + i = V ~ ~^T~q) An' 
If An = 1, then stop the algorithm. 

Using this we can show, in a similar manner to Proposition 2.1, that 

Proposition 4.1: Every 1/2 < A < 1 has a "near radix" product representation 

n=i \ qn + q) 
with "digits" an in the set {0, 1, ..., q - 1}. 
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