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1. Introduction 

The Stirling numbers of the second kind, known to mathematicians as the 
coefficients in the factorial expansion of powers, are of great importance in 
the calculus of finite differences, and have been extensively studied, espe-
cially with respect to their mathematical properties (see Jordan [14], Riordan 
[17] and references therein). Recently, several extensions and modifications 
were considered, which have proved useful in various combinatorial, probabil-
istic and statistical applications. Of the most interesting variations are the 
Lah numbers, Lah [16], and their generalization ^-numbers, Charalambides [8], 
[9], appearing in the expansion of a factorial of t, scaled by a parameter s, 
in a sum of factorials of t . 

The present paper was motivated by the problem of providing explicit ex-
pressions for the distribution of two-sample sums from Poisson and binomial 
distributions, one of which is left-truncated. Specifically, the distribution 
of the statistic Z = X\ + ••• + Xv + %v+i + ••• + Xv+n, where 

(a) Xi, ..., Xv is a random sample from a Poisson and Xv + \9 ..., Xv+n an 
independent random sample from a left-truncated binomial distribution and 

(b) Xi, ..., Xv is a random sample from a binomial and Xv + i> ..., Xv + n an 
independent random sample from a left-truncated Poisson distribution, 

led to the introduction of two double sequences of Stirling and (7-related num-
bers, obtained from the expansion of certain classes of polynomials in a series 
of factorials. 

In Section 2, we discuss some general results relating the expansion of 
polynomials in factorials and the corresponding exponential generating func-
tions (egf's). In Section 3, we consider two specific families of polynomials 
(r-q polynomials) and introduce two double sequences of numbers (R-Q numbers). 
Notice that in Tauber's [19] terminology these numbers might be called general-
ized Lah numbers. Next, the egf's of the R-Q numbers are used to derive recur-
rence relations and initial conditions and the connection to well-known numbers 
is examined in Section 4. In Section 5, it is shown how R-Q numbers can be 
used for the introduction of two new families of truncated discrete probability 
functions including binomial and hypergeometric distributions as special cases; 
also for the solution of the above-mentioned problems (a) and (b). An applica-
tion to occupancy problems is also provided. Finally, in Section 6, a further 
generalization of the R-Q numbers, through egf's, is also discussed, along with 
its properties and applications. 

2. Preliminary General Results 

Let {pm(x), m = 0, 1, ...} be a class of polynomials, and consider the 
double sequence {P(m, n) , m = 0, 1, ..., n = 0, 1, . . . , m} obtained by 
expanding the polynomial pm(%) in a series of factorials, namely 
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(2.1) p (x) = Z P(m> n)(x)n. 
m n = 0 

Denote the egf of the numbers P(m, n) with respect to the index m by fn(t), and 
the egf of the polynomials pm (x) by p(x; t), that is 

(2.2) fn(t) = £ P(m, n)^, p(x; t) = ± p (x)^. 

On using (2.1), we may easily verify that 

P(oo, t) = X fn(t)(x)n, 
n= 0 

and the next theorem is an immediate consequence of Newton's formula (see Jor-
dan [14]). 

Theorem 2.1: Let p (x ; t) denote the egf of a class of polynomials {pm (x) , 
m = 0, 1, ...} and fn(t) the egf of the corresponding numbers P (m, n) as 
defined in (2.1). Then 

(2.3) fn(t) = ^-[A"p(^ t)]x=Q. 

We now state some general results referring to recurrence relations satis-
fied by the polynomials pm(x) and the numbers P(m, n) , when a certain partial 
differential equation holds true for the egf p{x, t) . 

Theorem 2.2: If the egf p(x, t) of the polynomials p (x) satisfies the par-
tial differential equation 

o dv(x, t) 
(2.4) (1 + Bt + Ct2) F

 dt = (D + Et)p(x, t), 

where B, C, D, and E may be functions of x, then there is a recurrence relation 
connecting three polynomials p (x) with consecutive indices (degrees), namely, 

(2.5) pm+l(x) = (D - Bm)pm{x) + ((E + C)m - Cm2)pm _x{x). 

Proof: Differentiate p(x9 t) of (2.2) term by term, substitute in (2.4) and 
equate the coefficients of trn/ml in the right and left sides of the resulting 
identity. 

Note that (2.5) is true for m > 1, while, for m = 0, it reduces to 

(2.6) pl(x) = DpQ(x), 

which suggests that D = D(x) must be at least of order 1 with respect to x. 

Theorem 2.3: If p(x, t) satisfies the partial differential equation 

dv (x ~b) 
(2.7) (1 + bt)—— = (c0 + cYx + c2t + c123ct)p(x, t) 

dt 
with b, Cg, C\i Ci> and c\2 being constants, then the polynomials pm (x) and the 
numbers P(m, n) satisfy the recurrences 
(2.8a) pm+l(x) = (cQ + cYx - bm)pm(x) + (c2 + cl2x)mpm_l{x), m > 0, 
(2.8b) px(x) = (o0 + cix)pQ(x), 

(2.9a) P(m + 1, n) = (cQ - bm + Cin)P{m, n) + c1P(m, n - 1) 
+ m(c2 + nc\2)P{m - 1, n) + c\2mP(m - 1, n - 1), 

1 < n < m - 1, 
(2.9b) P{m + 1, m + 1) = ciP(m, m), 

(2.9c) P(T77 + 1, 777) = (o0 + (c]_ - b)m)P(m, m) + c1P(/?7, w - 1) 
+ c12mP(m - 1, m - 1). 
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Proof: For ( 2 . 8 ) , apply Theorem 2.2 i n the s p e c i a l case 

B(x) = b, c(x) = 0, D(x) = cQ + Cy£, E(x) = c2 + cl2x. 

For (2.9) observe that, after expanding pm+l(x) s pm(x), and pm_l(x) by (2.1), 
one obtains 

m + 1 m m 

Y.P(.™ + 1> w)(a;)n = (o0 - bm) Y,p(™> n)(x)n + c x £ nPfa , n)(x)n 
ft = 0 ft = 0 rc = 0 

/??+ 1 m- 1 
+ c l X! p ( ^ ' n - 1) (a?)w + 77z(c2 + rc<212) Hp(m ~ 1> w) (#)« 

n = 1 ft = 0 

+ mG\?_ Ylp(m - l, n - l)(x)n, 
~n= 1 

which establishes the proof. 

It is worth noticing that many classes of well-known numbers with special 
interest in statistical and combinatorial applications, have an egf p(x, t) 
obeying the partial differential equation (2.7). For example, 

a. If pm(x) = xm, we obtain the Stirling numbers of the second kind (see 
Jordan [14]) and 

p(x, t) = 2^xm—r = euX, — = xp(x, t) . 
m = 0 m' ot 

3. If pm(x) = (x - a)m , we are led to the noncentral Stirling numbers of 
the second kind, Koutras [15], or weighted Stirling numbers, Carlitz [4], [5], 
or r-Stirling numbers, Broder [1], with 

p(x, t) = X (* - a ) s = et(x~a\ -^-^—- = (x - a)p(x, t). 

y. If pm(x) = {-x)m, or more generally, pm(x) = (sx)m , we obtain the Lah 
or (7-numbers, respectively, Lah [16], Charalambides [8], [9], with 

P(X, t) = Y,^^mh = (1 + t)SX, (1 + t) ^ \ l = SXp(x, t). 
m=0 m" d t 

6. If pm(x) = (sx + r)m9 the resulting numbers are the Gould and Hopper 
numbers studied by Charalambides & Koutras [10]. In this case, we have 

p(x, t) = X (sx + r)ml- = (1 + t)sx + r
5 (1 + t) P \ ; = (sx + p)p(x, t). 

m=0 m' d t 

Notice how simple it is to compute the egf for any of the above-mentioned 
special cases. The egf fn(t) and the recurrences for the corresponding numbers 
are then easily obtained as a direct application of Theorems 2.1 and 2.3. 

3. The r-q Polynomials and Numbers—Generating Functions 
and Recurrence Relations 

Let us define two classes of polynomials by the formulas 

dm 

(3 .1 ) rm(x) = rm(x; s, a) = e~a — [tsxeat}t=v 
dm 

(3 .2 ) qm(x) = qjx; a) = e-* — [t«e**]t_v 

Thus, the first few r-q polynomials are 

r0(x) = 1 , vY(x) = sx + a, r2(x) = s2xz + (2a - l)sx + a2, 

q0(x) = 1 , qx(x) = x + a, q2(x) = x1 + lax + a(a - 1). 
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Considering the Newton expansion of r-q polynomials in a series of factorials, 
we may define the R-Q numbers by 

m m 
(3 .3 ) iQ

ffl(x; a , s) = ]£ R(m9 n; s, a)(x)n = ^Rtm, n) (x)n, 
n = 0 n = 0 

m m 

(3 .4 ) qm(x:> a) = S Q(™> nm> a)Wn
 = J2 Q(m> n)(x)n. 

n = 0 n = 0 
Since for a = 0 the r - q polynomials reduce to 

rm(x) = (saO^, ^ 0 * 0 = xm, 

it follows that 

R(m, n; s, 0) = C(m, n, s) 

the C-numbers, 

R(m, n; -1, 0) = L(rn, n) 

the Lah numbers, and 

Q(m, n; 0) = S(m, n) 

the Stirling numbers of the second kind. 
As a starting point, let us derive the egf of the r-q polynomials and num-

bers, namely 

(3.5) r{x, t; s, a) = YJ Tm^x:> s' a^> 
m = 0 m ' 

00 j-m 

fn(t; s, a) = £#(777, rc; s, a)— r , 

q(x, t; a) = £ q^Oc; a)—r> #„(*; a) = E 6(w' n5 ^)^y-
w = o w =« "' -

Regarding tsxeat and taext as f u n c t i o n s of t and expanding i n a Taylor 
s e r i e s around t - 1, we o b t a i n 

tsx at = y ±L^\t3x atl Si LL_ 

ta£rt = Z ^ [ t a ^ L 1
( t " t

1 ) , 

and, using definitions (3.1) and (3.2), we get 

(3.6) r(x, t) = r(x, t; s9 a) = (1 + t)sxeav , 

(3.7) q(x, t) = q(x, t; a) = (1 + £)aext. 

As regards the egf's of R-Q numbers, they may be obtained easily from Theorem 
2.1, which, in view of (3.6) and (3.7), gives 

fjt; s, a) =^re«*[A"(l + *)8*U0 

T e^ [ (1 + t ) s x { ( l + t ) s - 1}"\X=0-

gn(t; a) = ^ ( 1 + t ) a [A" e '* ] x . „ - ^ ( 1 + t)a [e** {e* - U"]x.0. 

There fo re , 

(3 .8 ) fn(t) = fn(t; s, a) = ± eaH(l + t)s - 1 } " , 
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1 
(3.9) gn{t) = gn(t; a) = ̂ -(1 + t)a {e* - l}n 

ni 

Differentiating (3.6) and (3.7) with respect to t , we obtain the partial 
differential equations 

and 

dr(x, t) 
(1 + t) — = (sx + at + a)r(x9 t) 

. dq(x, t) 
(1 + t) rr = (a + xt + x)r(x, t), 

at 
and using Theorem 2.3, we may establish the following recurrence relations for 
the r-q polynomials and R-Q numbers 

rm + i(x) = (a + sx - m)r(x)+ amrm^i(x), m > 1, 
(3 .10) m 

r±(x) = (a + sx)rQ(x); 

qm+1(x) = (a + x - m)qm(x) + mxqm_l(x), m > 1, 
ql(x) = (a + x)qQ(x); 

(3 .12) R{m + 1 , ri) = (a + sn - m)R(jn, ri) + amR{m - 1, ri) 
+ sR(rn, m - 1 ) , 777 > n + 1 ; 

(3 .13) i?(/7? + 1, m) = sR(m, m - 1) + (a + sm - m)R(m, m); 

( 3 . 1 4 ) i?(/77, 777) = Si?(772 - 1 , 777 - 1 ) ; 

(3 .15) Q(m + 1, ri) = (a + n - m)Q(m, n) + nmQ{m - 1, n) 
+ Q(l7l, 71 ~ 1) + 77̂ (777 - 1 , ft - 1) , 777 > ft + 1 ; 

( 3 . 1 6 ) §(777 + 1 , 777) = aQ(m, m) + Q(m, 777 - 1) + mQ(m - 1 , 777 - 1 ) ; 

( 3 . 1 7 ) e(-777, 777) = 5(777 - 1 , 777 - 1 ) . 

Notice that both relations (3.12) and (3.15) are not "triangular array recur-
rences" since, for the computation of the (777 + 1, n) term, they require the 
value of the (777 - 1, n) term. It is also obvious that, in order to compute all 
the terms of the double sequences i?(7?7, n) and Q(m, n) , m > n via recurrences 
(3.12) and (3.15), respectively, one should at least know the following "ini-
tial" (boundary) conditions 

a. 777-axis v a l u e s R(jn, 0 ) , Q(m, 0 ) , 777 = 0, 1, . . . , 
b. first-diagonal values R(m9 m), Q(ms 777), 777 = 1, 2, ..., 
c. second-diagonal values i?(777, 777-1), Q(m, 777 - 1) , 777 = 1, 2, . . . . 

For (a), consider the egf's (3.8) and (3.9) which, in the special case n = 0, 
give 

J°  m=o ml m^0 ml 

g (t) = V 5(777, 0)^- = (1 + t)a = T (a)tm. 

Hence, 

(3.18) i?(777, 0) = am, Q(m, 0) = (a)m. 
The initial condition (b) is readily obtained through (3.14), (3.17), (3.18), 
as 

(3.19) R(m, 777) = sm, Q(m, 777) = 1. 

As regards condition (c) , we proceed as follows: relations (3.13) and (3.16), 
in view of (3.18), may be written in the form 

1990] 325 



BINOMIAL-TRUNCATED POISSON AND POISSON-TRUNCATED BINOMIAL RANDOM VARIABLES 

As-m+lR(m, m - 1) = a + (s - l)m, LQ{m9 m - 1) = a + m, 
m m 

and inverting the difference operator Lm9 we obtain 

s-m + lR(m, m - 1) = am + (s - l)^) + fei, CO", w - 1) = aw + (̂ ) + fe2-

Since 
i?(2, 1) = 2i?(l, 0) + (a + s - l)i?(l, 1) = (2a + s - l)s 

a n d S(2, 1) = 6(1, 0) + a«(l, 1) + «(0, 0) = 2a + 1, 

both constants k\ and k^ should vanish, and we finally deduce that 

(3.20) ,m* V2/ 2 ^ = 2i 3j _ ^ 
<2(m, m - 1) = aw + ( ) 

It is obvious that the recurrences (3.12) and (3.15), along with initial condi-
tions (3.18), (3.19) and (3.20) determine the double sequences R{m9 ri) , Q(jn9 n), 
m > n. 

4. Connection with Other Numbers 

Let us denote by 

s(m, n; a) = —j- ^ > } -L = a'
 S{m> n; a) = ̂ "^-a d_ 

ldxr' 
the noncentral Stirling numbers of the first and second kind, respectively, and 

C(m9 n; s, a) = ^j[An(sx + a)m]x=0 

the noncentral C or Gould and Hopper numbers. 
The first class of numbers has been recently studied by Carlitz [4], [5] as 

weighted Sterling numbers, by Koutras [15], as noncentral Stirling numbers, by 
Broder [1] as r-Stirling numbers, and by Shanmugan [18]. The second class, 
which was introduced by Chak [6] and Gould & Hopper [12], and subsequently 
investigated by Charalambides & Koutras [10], is closely related to Howardfs 
[13] degenerate weighted Stirling numbers Si(m9 n, A|6) and S(m9 n, X|0) by 

Sl(m, n, X|0) = {-l)m~nC{m9 n; 6 - A, 6)/6n, 

S(m9 n, X|0) = QmC(m9 n; AG"1, 0"1). 

In order to establish the connection between the R-Q numbers and the above-
mentioned classes, let us denote by 

and 

00 4-m i 

Hn(t) = En{t; a) = £ S(m, n; a)^j = -^ eat [e* - l]n 

oo fin I 

Cn(t) = Cn(t; s, a) = £ C(m, n; s, a)-j = ̂ -(1 + t)a[(l + t)s - l]r 

the egf!s of noncentral Stirling and C-numbers, respectively. Comparing with 
formulas (3.8) and (3.9), we obtain 

fn(t; a, s) = eatfn(t; 0, s) = eatCn(t; s, 0), 

gn(t; a) = (1 + t)agn(t; 0) = (1 + t)aHn(t; 0), 

(1 + t)afn(t; s, a) = eatCn(t; s, a), 

ea*gn(t; a) = (1 + t)aHn(t; a), 

which imply the corresponding relations 

(4.1) R{m9 n; s, a) = £ (™)am-kR(k, n; e, 0) = £ (fjam'kC(k9 n, s) 
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Q(m, n; a) = £ (£)(a)w_ke(fc, n; 0) = £ (?)(a)w_kS(fc, n); 

(4-2> £ (̂ )(a)m_ki?(fc, n; s5 a) = £ (^)am"^(/c5 n; s, a), 
and m m 

L^V-^cfc, «; a) = L(^)(a)m_ks(fc, "! a>-
Note also that (4.1) leads to the inverse relations 

(4.3) C(m, n; s) = f< (?) (-af ~ k R (k, n; s, a), 
k=n\K/ 

and m 
S(m, n) = £ (k)(-a)m_kQ(k5 n; a), 

which imply that the RHS sums are independent of the parameter a. 
Finally, we mention that, in view of (4.1), formulas (3.3) and (3.4) lead 

to the following explicit expressions for the r-q polynomials 
m 

(4.4) rm(x; s, a) = £ U K _ k ( e * ) * 
k =0 V K / 

and m 
qm(oo; a) = £ Q ( a ) m _ ^ . 

fe= o 

Remark 1: The proof of (4.4) could also be obtained through the egf's r(x, t), 
q(x, t), by expanding the RHS of (3.6) and (3.7) in a power series with respect 
to t . 

Remark 2: Comparing (4.3) with the binomial and Vandermonde formulas, 

(a + x)m = E (™)am-kxk, (a + ex)m = £ (™)(a)n_k(sa:)fc , 

one might say that the r-q polynomials are the "intermediate connectors" in the 
transition from powers to factorials and vice versa. 

Another important formula for the R-Q numbers may be obtained as follows: 
Multiplying (4.1) by C(n, A, s~l) and summing up for n = A, A + 1, ...,/??, we 
have 

m m m , , 
£i?(rc, n; s, a)C(n, A, s"1) = £ ^ U F " ^ ^ ' n> s > c ^ ' A> s _ 1) 

m K 

T,U)am~kT,C(k, n, s)C(n, A, s~l) 
k=XXK/ n=X k = X ' n = X 

and on using the orthogonality property of C'-numbers, we deduce that 
m 

(4.5) £i?(/7z, n; s, a)C{n, A, s~l) = [\)am'x. 
n=X XA/ 

Similarly, the orthogonality property of Stirling numbers implies that 

(4.6) £S(/w, n; a)s(n, A) = (^j(a)m_A. 
n = X 

In matrix notation, formulas (4.5) and (4.6) could be stated as follows: If 
R = (Rmn)> Q = (Qmn)> c = (cmn) > a n d s = (s mn) a r e t n e infinite matrices with 

Rmn = i?(/77, n ; s , a ) , Qmn = §(/??, n; a) 9 m, n = 0 , 1, . . . , 
C m = 6,(/??, n , s " 1 ) , sw?.z = s(m, n), n, A = 0, 1, . . . , 

r e s p e c t i v e l y , then 
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* * - ( ( > - ) . < * - ( ( > > - ) 

5. Appl ica t ions 

Two new families of d i s c r e t e t r u n c a t e d d i s t r i b u t i o n s 

It is obvious that the egf's (3.8) and (3.9) satisfy the relations 

nf A' 
fn + x(*'> s, a + b) = 7 — — — / n ( * ; a, s)fx(t; b, s) 

and 
(n + A) ! 

9n+x(t; a + b) = ~^n'+
X'x)l 9n(t; a)gx(t; b), 

which imply the following addition theorems 
- 1 JH 

R(m, n + A; s, a + b) = ( ) X (7 F ( ^ > n ; s , a)R{m - k, A; s , 2?) ; 
\ n / k=0\K/ 

Q{m, n + A; a) = ( n + A) £ ( 5 J ) e ( f c , n ; a)S(ro - fc, A; i ) . 
fe= 0 

For A = 0 one o b t a i n s , by v i r t u e of ( 3 . 1 8 ) , 

R(m, n; s, a + b) = Z U P™ ^(^> n5 s> a ) > 

S(TW, n ; a + b) = L U K ^ - f c ^ , ^ a) > 
k = o X K / 

and, therefore, we are led to the conclusion that 
im\bm~xR(x, n; s, a) 

(5 .1 ) f(x; m, n; a, b) = L. — ~7T> x = n , n + 1, 
\X/R(m, n; s, a + b) 

^ / ^ \ ( ^ - ^ ( ^ n ; a ) 

# (x ; m, n ; a , 2?) = ( ) - — , x = n , n + 1, . . . , /??, 
define families of multiparameter discrete distributions with range 

Rx = {n, n + 1, ...,/??}. 

Note that probability functions (5.1) could be regarded as generalizations 
of binomial and hypergeometric laws, respectively, since 

g(x; m, 0; a, b) = g)(m * J/( /a + 
m 

Convolut ion of binomial a n d Poisson d i s t r i b u t i o n s 
with t r u n c a t i o n away from ze ro 

L e t Xi, Xi> • • • 5 Xv be a r andom s a m p l e f rom t h e b i n o m i a l d i s t r i b u t i o n 

( 5 . 2 ) P[X = x] = (1 + Q)~N^)QX, x = 0 , 1 , 2 , . . . , /!/, 

where 0 = p / ( l - p ) > 0 and f is a positive integer. It is well known that the 
sum Z]_ = Xi + • • • + Xv is again a binomial variable b(vN, p) with probability 
function 

(5.3) P[Zl = z] = (1 - 6)~a(^0s, z = 0, 1, ..., a, a y/1/. 
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Assume further that another independent sample Xv + i, . .., Xv+n coming from the 
zero-truncated Poisson distribution with parameter 0 is available. For statis-
tical inference purposes, it would be interesting to establish- explicit for-
mulas for the distribution of the two-sample sum Z = Xi + ••• + 'Xv+n. To this 
end, we proceed as follows: The probability function of Z2 = Xv + L + ••• + Xv+n 
was obtained by Cacoullos [2] in the form 

nlS(z, n)Qz 

P[Z2 = z] = ——. , z = n, n + 1, ... . 

Therefore, 
z 

P[Z = z] = E p I z l = s " x]P[Zz = x] 

Tr7i£n(l)w.-*s<*>* (1 + 0)a(ee 

which, on using (4.1), gives 

(5.4) P[Z = z] = n^a/ — — , .s = w, n + 1, ... . 
(1 + Q)a (eQ - l)n zl 

Expression (5.4) may be used to obtain an explicit formula for the (unique) 
unbiased estimator of the parametric function Qk (k a positive integer) that is 
based on the two-sample sum Z. Thus, from the condition of unbiasedness 

E[hk(Z)] = Qk for every 0 > 0, 

we obtain, by virtue of (5.4), (3.5), and (3.9), 

}2 hk(z)Q(z, n; a)-j = X (z)kQ(z - k, n; a)-j, 
z =n ^ • z =n+k *' 

which implies that 
(z)kQ{z - k, n; a) 

hk(z) - ' «<*' nl a) 

. 0 if z < n + k. 
Hence, 

hi(Z) = ZQ(Z - 1, n; a)/Q(Z, n; a), Z > n + 1 
is an unbiased estimator of 0, and since 

VartMZ)] = £[(MZ))2]-62 = S[(^i(Z))2] - E[h2(Z)] 
the statistic 

h*(Z) = [h±(Z)}2 - hz(Z) 
will be an unbiased estimator of the variance of the unbiased estimator of 0. 

Consider the case where Xi, X2, ->-, Xv is a random sample from the Poisson 
distribution with parameter 0 and Xv+l, ..., Xv+n is an independent sample from 
the zero-truncated binomial law with probability function 

l(N 

if z > n + k, 

P[X = x] = [(1 + Q)N - irl{xpx> a? = 1, 2, ... . 
The distribution of Zx = X1 + • • • + Xv is, of course, Poisson with parameter 
VQ, while the probability function of Z2 = Xv + l + ••• + Xv +n is given by (see 
Cacoullos & Charalambides [3]) 

nlC(x, n, N) dx 

p [ z > = x] " la + e)̂  - ir &.* * - * . » + ! . - • • • 
Therefore, the probability function of the two-sample sum Z = X\ + • 
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P[Z = z] = E p E z l = * - a?]^[22 = a?] 

ft! 6 s 2 / ! ? \ 
vQ[(l + e )* - l]n zl £?n\x) e 

which, on using (4.1), reduces to 

(* ^ pry 1 n\R(z, ft; N, v) 6* 
(5.5) P[Z = z] = - , z = ft, n + 1, ... . 

evQ[(l + 6)* - l]n zs-
Following similar arguments with the binomial-zero truncated Poisson problem, 
one could easily verify that hk(Z) with 

(z)kR(z - k, n; N, v) 

h k ( z ) -; R { z > n; N> v) 
if z > n + k> 

,0 if z < n + k, 

is an unbiased estimator of the parametric function 0^, while 

h*(z) = [/z!(Z)]2-̂ 2(Z) 
is an unbiased estimator of the variance of the unbiased estimator of 8. 

c. Occupancy problems 

Formula (4.1) implies the following combinatorial interpretation of the 
numbers Q (m , n; a): Consider n identical cells with no capacity restrictions 
and a control cell of a E Z+ different (distinguishable) compartments, each of 
capacity 1. If a + m > ft, then Q(m, n; a) is equal to the number of ways of 
distributing m distinct balls into the cells so that none of the n identical 
cells is empty. 

(L The Generalized R-Q Numbers 

Following the technique used by Charalambides [8] and Charalambides & Kou-
tras [10], we may define the generalized R-Q numbers 

Rr(m, n; a, s) = Rr(m, ft) and Qr(m, n; a) = QT(m, ft) 

by their egffs as follows [cf. (3.8) and (3.9)], 
00 tm 

(6.1) fn,r(t) = fn,r(^5 S, a) = £ Rr(m> n^^T 
m = rn L' 

j ; e ° t { a + ty-:t(s
k) k=0*"' 

(6.2) gnir(t) = gn,r(t; a) - £ Qr(m, n)g-
m-rn ml 

r - 1 +k\n 1 / v - 1 -i-k v 

ft! I ^ 0 &! ) 
The generalized i?-§ numbers retain many of the properties of the R-Q numbers 
and may be studied in a similar way. 

Thus, differentiating (6.1) and (6.2) with respect to t, we obtain the 
difference-differential equations 

d tr~l 

(1 + t)— fn,r{t) = (a + sn + at)fntr(t) + (s)r (p _ 1} , /„,r_i(t), 
and P-l 

(1 + *}dt ̂ .^(t) = (a + " + nt)9n.*W + (1 + ^ ( Z - 1)! ?n,r-l<*>' 
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which imply the fo l lowing r e c u r r e n c e r e l a t i o n s : 

Rr(m + 1, ri) = (a + sn - m)Rr{mi n) + amRr(m - 1, ri) 

+ ( P ̂  1 ) (s ) r i? r (wz - r + 1, n - 1 ) , m > vn + 1; 

Rr(rn + I, n) = (a + sn - rn) i? P (pn 5 n) + ( *^ 1)(s)rRr(rn - r + 1, n - 1 ) ; 

Rr(rn, ri) = f j (s)rRr(rn - r , n - 1 ) ; 

<2pO?7 + 1, n) = (a + n - m)QT{m, ri) + nmQv(m - 1, n) 

+ ( P _ x ) ^ - r + 1, w - 1) + 2"g)«(w - r, n - 1 ) , 
m > rn + I; 

])Qr(m - r + 1 , n - 1 ) 

+ r(^)Qr(rn - r, n - 1); 

( VYl\ 
r )rQr(m - r, n - 1 ) . 

Not ice a l s o t h a t the 777-axis v a l u e s for RT(jn, ri), Qr(m9 ri) a r e 

i?r(77z, 0) = am, ep(7??5 0) = ( a ) m , 

as may be readily verified from (6.1) and (6.2). 
Another set of recurrences (with respect to r) useful for tabulation pur-

poses is the following: 

Rr + 1(m, n) = £ (-l)k ^TT^ittRrirn - rk, n - fc); 

i? r(m, ri) = 2^ - r - i ? r + i ( w ~ P K , tt - fc) ; 
fc= 0 ^ ! ^ P / 

Sr + iOw, n) = ^2 (-l)k r
 k Qr(m - rk, n - k); 

n (#0 v 
Qr(m, ri) = J2 7,f , ^ Sr + iO" - rfe» n - k). 

k= 0 & • v*1- J 

This set of recurrences results from the formulas: 

w h/s\k t r k 

fn,r + l ( t ) = X/ (-1) ( ) ~TT~ fn-k,r(t); 
k=0 ^ r / Kl 

fn.rW = t(S
v)k T^fn-k,r + l(V; fc-o^/ kl 

n ivk 

9n,r + l(f^ = £ t - 1 ) A:! ( p ! ) k ^n -ktr^ '•> 
n ^vk 

It is also worth noticing that: 

a. The generalized i?-g numbers are connected to the generalized C and 
Stirling numbers (see [8]) by relations analogous to those of Section 4 for the 
flnon-generalizedn quantities. 
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b. The form of the egf's (6.1) and (6.2) imply "proper" addition theorems 
for the generalized R-Q numbers, which lead to the definition of two multi-
parameter discrete distributions with probability functions 

/m\bm'xRr(x, n; s, a) 
f(x; 777, n; a, b, r) = I— — , x = rn, rn + 1, . . . , m, 

>, ^x/ RT{rn, n; s, a + b) 
and 

g(x; m, n; a, b) = — , x = rn, rn + 1, . . . , m. 
\xl Qr(m, n; a + b) 

c. The generalized R-Q numbers appear in the convolution of two samples 
coming from a binomial and a Poisson law, when one of the distribution laws is 
truncated on the left away from a given nonnegative integer r. More pre-
cisely, we have: 

(i) If Xi, X2 > ..., Xv is a random sample from the binomial distribu-
tion b(N, p) and Xv+i, ..., Xv+n another independent sample from the Poisson 
distribution with parameter 0 = p/(l - p), truncated away from r, i.e., 

1-1 *x 
P[Xi = x] = 

r - 1 

- T. k^o kl 
—;•, x = p, r + 1, . . . , 

i = y + l , . . . , v + n, 
then the distribution of the statistic Z = Z]_ + • • • + Xv + n is given by 

Qr(z, n; a) Qz 

P[Z = z] = , z = rn, rn + I, .... 
^n,P(8; a) z\ 

(ii) If Xi , X29 . . « , Xv is a random sample from the Poisson distribu-
tion with parameter 0, and Xv+i, ..., Xv+n another independent sample from the 
binomial law with probability function 

P[Xi = x] (i + e)* - E £ e* 
k= 0 xa:/ 

I 16 , x = r, r + 1, ..., 
i = z; + 1, . . . , v + n, 

then the distribution of the statistic Z = Z]_ + • • • + Xv + n is given by 
i?r(g, n; 71/, n) QS 

P [ Z = s 1 = , z = rn, rn + I, ... . 
/„,r(e; /i/, v) 2! 

d. The numbers Qr(m9 n; a) admit a combinatorial interpretation similar to 
the one given for Q(m, n; a) in Section 5c. In the expression "none of the n 
identical cells is empty," simply replace "is empty" by "contains less rhan r 
balls." 
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