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1. Introduction 

Haukkanen has pointed out in [3] the connection that exists between the 
specially multiplicative arithmetical functions (to be defined in Section 2) 
and the Fibonacci sequence. In this paper we shall discuss the similar connec-
tion that exists between certain arithmetical functions and the generalized 
sequences {wn}, where wn = wn(a, b; p, q), i.e., 

WQ = a, u>i = b, and wn = pwn„i - qwn_2> f o r n - 2, 

which have been studied by Horadam [5], [6], [7], and others (see, for example, 
[10]). Here, a, b, p, and q are arbitrary complex numbers, except that a * 0. 

Our aim is to characterize the family of generalized sequences in terms of 
a family of arithmetical functions, and to illustrate how certain properties of 
the sequences reflect properties of the arithmetical functions. This work was 
done while the second author was a visiting Stouffer professor at the Uni-
versity of Kansas during the 1987-1988 academic year. 

General background material on arithmetical functions can be found in most 
texts on number theory, and more specialized material is in the books by 
Apostol [1] and McCarthy [14]. We shall review here and in the following sec-
tion several concepts which are used in this paper. 

A (complex-valued) arithmetical function, /, is called multiplicative if 
f(l) = 1 and f(rs) = f(r)f(s) whenever (r, s) = 1: it is called completely 
multiplicative if f(l) = 1 and f(rs) = f(r)f(s) for all positive integers r and 
s. If f is an arithmetical function and t is a prime, then the formal power 
series 

f(t)(x) = /(1) + f(t)x + /(t2)x2 + . . . 
is called the Bell series of / at t . Bell series are discussed on pages 42-45 
of [1], and in several exercises (1.97-1.102) of [14]. If /is multiplicative, 
then / is determined completely by its Bell series (at all primes t) . If f is 
completely multiplicative, its Bell series at t is 

f(t)(x) = 1 + f(t)x + f(t)2x2 + ... = i _ l
f(t)x. 

We shall abuse the language and refer to the closed form of the Bell series as 
the Bell series itself. It is the relation between arithmetical functions and 
their Bell series that allows us to make the connection between arithmetical 
functions and generalized sequences. 

2. The Sequences {wn} 

An arithmetical function, /, is called specially multiplicative if there 
exist completely multiplicative functions g^ and g2 such that / = gi * g2? the 
Dirichlet convolution of g^ and g2, i.e., 
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for all positive integers r, where d runs over all of the positive divisors of 
r. Specially multiplicative functions arise naturally in several contexts in 
number theory. However, we emphasize that examples can be constructed in a 
completely arbitrary manner, as follows. For each prime t, let at and 3t De 

complex numbers. Let g-y and g^ be the completely multiplicative functions such 
that, for each prime t, g\(t) = at and g^t) = 3t- Let f - g\ * $2' Then / is 
specially multiplicative and, for each prime t and n > 1, 

/(*n) = I>t'CJ"-
,7 = 0 

Specially multiplicative functions were studied first by Vaidyanathaswamy 
[20] under the name "quadratic functions," and the name "specially multiplica-
tive functions" was given to them by Lehmer [11]. These functions are dis-
cussed on pages 18-27 and 65-68 of [14] and in papers by Kesava Menon [8], 
McCarthy [12], [13], Mercier [15], Ramanathan [16], Rankin [17], Redmond & 
Sivaramakrishnan [18], and Sivaramakrishnan [19]. 

If f is specially multiplicative, the Bell series of / at a prime t is 
given by 

1 
f (x) = -, 

{t) 1 - f(t)x + B(t)x2 

where B is the completely multiplicative function for which B(t) = £7-. (£)<7o (t) 
for each t: we note that f(t) = g\(t) + g^it). Furthermore, if / is a multi-
plicative function such that, for each prime t, its Bell series at t is given 
by -| 

1 - ctx + dtx2 

for some complex numbers Ct and dt, then / is specially multiplicative, as it 
was described earlier in this section, with at and 3t the (possibly equal) 
roots of X2 - ctX + dt . 

In [9], Lahiri defined an arithmetical function / to be quasimultiplicative 
if f(l) * 0 and if there is a complex number k * 0 such that f(r)f(s) = kf(rs) 
whenever (p, s) = 1. It follows immediately that k = f(l) and k~lf is multi-
plicative. In fact, an arithmetical function f with jT(l) * 0 is quasimultipli-
cative if and only if f(l)"lf is multiplicative. 

Now we can make precise the connection between the generalized sequences 
{wn} and certain arithmetical functions. 

Theorem 1: For a sequence of complex numbers {cn}, n > 0, there exist complex 
numbers a, b, p, and q such that cn = wn(a, b; p, q) for all n > 0 if and only 
if there is a quasimultiplicative function / and a prime t such that 

(i) f(l)~lf - g\ * Vffz* where g± is specially multiplicative, g^ i-s com~ 
pletely multiplicative, and u is the Mobius function, and 

(ii) cn = f(tn) for all n > 0. 

Proof: The generating function of the generalized sequence {wn}, where Wn = 
wn(a, b; p, q) is, from [6], 

V - -.« - — + ^ ~ Pa^x 

n= 0 
W„ X' 

px + qx2 

Let t be an arbitrary prime, and let g^ be a specially multiplicative function 
such that 

Gl(t)W = 
1 

1 - px + qx2' 
and let g^ be a completely multiplicative function such that g^it) = (pa - b)/a, 
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so that 

v J a + (b - pa)x 

The inverse g2 of g2 with respect to Dirichlet convolution is \ig2 (see Prop. 
1.8 in [14]), and g2lt)(x) = (g2(t)(x))~l (see Th. 2.25 in [1]). Therefore, if / 
is a quasimultiplicative function given by f(r) = a(gi * \ig2) (r) for all r, 
when wn = f(tn) for all n > 0. 

Conversely, let f be a quasimultiplicative function for which (i) holds, 
and suppose that, for some prime t, 

cn = f(tn) for all n > 0. 

Then cn = wn(ct, b; p, q) for all n > 0, where 

a = /(l), p = g\(t), b = a(^x(t) - g2(t)), and q = hl(t)h2(t) , 

where hi and /z2 are completely multiplicative functions such that gi = hi * h2. 

3. Some Examples 

Horadam pointed out in [7] that several sequences of general interest are 
of the kind considered in Section 2. 

(A) Wn = Wn(l, 2; 2, 1). iwn} is the sequence of positive integers. The 
quasimultiplicative function is T, where T (r) is the number of divi-
sors of v. 

(B) Wn = Wn(l, 3; 2, 1). {wn} is the sequence of odd positive integers. 
The function is T * uA, where A is Liouville's function (see [14], p. 
45). 

(C) wn = Wn(a, a + d; 2, 1). {wn} is the arithmetical progression 

a, a + d, a + 2d, ... . 

The function is a(x * ]ig) , where ^ is the completely multiplicative 
function with g(t) = 1 - £?/a . Here, and in other examples, t is an 
arbitrary prime., 

(D) wn = wn{a, aq; q + 1, (7). {wn} is the geometric progression 

a, a<7, a<^2, . . . . 

The function is ah, where h is the completely multiplicative function 
with h(t) = q. 

(E) The Fermat sequences {un} and {vn}, where 

un = wn(l, 3; 3, 2) = 2n + l - 1 and yn = wn(2, 3; 3, 2) = 2n + 1. 

The functions are, respectively, hi * h2 and 2(/Z]_ * /?2 * U#2) > w n e r e 

/zj, /z2, a nd #2 a r e completely multiplicative functions with 

hi(t) = 1, h2(t) = 2, and ^2(£) = 3/2. 

(F) The Pell sequences {un} and {vn}, where 

un = wn(l, 2; 2, -1) and vn = wn(2, 2; 2, -1). 

The functions are, respectively, hi * h2 and 2(hi * h2 * \ig2), where 
hi, h2, and g2 are completely multiplicative functions with 

hi(t) = 1 + /2, /z2(t) = 1 - / 2 , and #2(t) = 1. 
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One more example. In [ 4 ] , Horadam cons ide red the sequence {wn}9 where wn = 
wn(r, v + s; 1, - 1 ) . The func t ion i s r(hi * h2 * vgz) > where /z l 5 h2, and g2 
a re complete ly m u l t i p l i c a t i v e func t ions wi th 

hY{t) = (1 + /f>)/2, hz(t) = (1 - / 5 ) / 2 , and g2(t) = s/r. 

With v = 1 and s = 0 this is, of course, the Fibonacci sequence. 
In several of the examples, a = 1 and b = p. Sequences for which this is 

true are of special interest, and they will be discussed in the following sec-
tion. Thus, we shall consider sequences {un}, where 

un = un(p, q) = wn(l, p; p, q). 
These are the sequences for which the corresponding arithmetical functions are 
specially multiplicative. 

4. The Sequences {unJ 

There exist various characterizations of specially multiplicative func-
tions, and each of them furnishes us with a characterization of the class of 
sequences {un}. Thus, we have the following theorem; no proof will be given, 
and the reader is referred instead to Theorem 1.12 and Exercises 1.101 and 
1.102 in [14]. 

Theorem 2: For a sequence of complex numbers {cn}, n > 0, the following state-
ments are equivalent: 

(i) cn = un(p, q) for complex numbers p and q, and all n > 0. 
(ii) There is a specially multiplicative function f and a prime t such 

that cn = f(tn) for all n > 0. 
(iii) OQ = 1 and there is a complex number a such that, for all 777, n > 1, 

Cm + n~ °mcn ~ acm-\cn-\' 
(iv) CQ = 1 and there is a complex number b such that, for all m, n > 0 

with m < n, 
m 

GmGn ~ L-j Gm + n-2i® • 
i= 0 

(v) There are complex numbers d and 0 such that 

Z V n = y——2-
?2 = 0 1 - ax + exz 

From the details of the proof of this theorem it emerges that, if (i)-(v) 
hold for a sequence {cn}, then d = p = /(t) and a = 2? = e = q = f(t)2 - f(tz). 

Results about specially multiplicative functions now yield results about 
the sequences {un}, and vice versa, of course. For example, by Theorem 2 of 
[18], if un = un(p, q) for n > 0, then, for all n > 1, 

[«/2] . 
^n = E ("1)J n 7 «7)p"-2^J. 

i = 0 \ J I 
This is an old result about these sequences. The original reference is given 
on page 394 of [2]. 

The identities of (iii)and (iv) are special cases of the same general iden-
tity. The latter is obtained from an arithmetical identity involving specially 
multiplicative functions given first in [13] (see also Ex. 1.79 in [14]). Let 
un = un(p, q) for n > 0. If g is an arbitrary arithmetical function and if 
G = g * y, and if t is any prime, then for all m, n > 0 with m < n, 
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__^ . . in 

(1) E£(^)q^-^n-; = i;^(^)^uw+n_2i. 
v=0 i=o 

If # = C> where £(p) = 1 for all r, then G = 6, where 6(1) = 1 and 6(r) = 0 for 
all r > 1, and (1) is the identity of (iv) . If g = 6, then £ = y, and (1) is 
the identity of (iii) . If g = T = c * c , then £ = C, and we obtain from (1) 
the identity 

Y.^Um-iUn-i = E (̂  + 1)^2^+^-2;; 
i= 0 i= 0 

in particular, with m = n, 

^qn-lu\ = J] (n - i + l)q n-zn. U2i 

Kesava Menon [8] associated with a multiplicative function f another multi-
plicative function /*, which he called the norm of /. The definition of f* can 
be found on page 50 of [14] and in several of the papers in our list of refer-
ences. For our purposes, it suffices to note that if g and h are completely 
multiplicative functions, and if / = g * h, then /* is also specially 
multiplicative and, in fact, f* = g2 * h2. Thus, if the sequence {un}, where 
un = un(p, q), is given by un = f(tn) for a prime t, then we can associate with 
{un} the sequence {u*}, where u\ = f*(tn). We have u* = un(p*, q*), where 

P* = f*(t) = g(t)2 + h(t)2 = p2 - 2q and q* = g(t)2h(t)2 = q2. 
Thus, 

W* = Un(P2 ~ 2cL> ̂ 2)» 
From Theorems 4.1 and 4.2 of Sivaramakrishnan [19], which relate the functions 
/ and f* > we obtain two identities relating the sequences {un} and [u%] : 

(2) 4 = "£ + 2 £ ̂ w*.; 
i= 1 

and 

(3) LC-D^M-i = t (-D̂ M-i-
^=0 i=0 

5. Generating Functions 

We can obtain some information about the generating functions of the se-
quences {un}, and related sequences, from the Dirichlet series generating func-
tions of corresponding arithmetical functions. In this section we assume that 
the reader is familiar with at least some of the material in Chapter 5 of [14] 
on Dirichlet series. Theorems about Dirichlet series generating functions 
involve hypotheses concerning the convergence of the series: we shall assume 
that whatever convergence is required does hold. 

It will suffice to give several examples. Mercier ([15], Th. 3) gave the 
generating function of the product of two specially multiplicative functions, 
and we shall use the form of his result given on page 104 of his paper. From 
Mercier's result we obtain the following: if un = un(p, q) and u^ = un(p f, q!) 
for all n > 0, then 

HUnKxU = 1 - qq 'x' 2 

ri^o'n "n 1 - pp'x + [ ( p 2 - q)q ' + ( p ' 2 - qr)q]x2 - pp'qq'x3 + q2ql2xh 

In pa r t i cu l a r , 

S -k n L — (J X unu*xn = ± , 
«=o 1 - p{p2 - 2q)x + (p4 - 3p2q + 2q2)qx2 - p(p2 - 2q)q3x3 + q^xh 

and 
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-,2̂ .2 

W E *n* 2„» = * - $ X . 
1 - p2x + 2(p2 - q)qx2 - p2q2x3 + ^ x 4 

The denominator on the right-hand side of (4) factors into the product of 
two quadratics, one of which is (1 - qx)2. Hence, 

(5) E 4 2^n _ 1 + <flC 
n=o rL (1 - (p2 - 2q)x + ^2x2)(l - qx)' 

and we note that 

1 
(6) E < ^ 2 _ ?^w -L ^2^2 n=0 1 ~ (p ~ 2̂ )o: + <7ZX' 

The generating function (6) can be obtained also from the Corollary to Theorem 
7 of Redmond & Sivaramakrishnan [18]. 

From (5) and (6), we have 

(7) t u2
nx" = 1 ± _ ^ t u*x\ 

n=0 I - qx n=o n 

Now, 
1 + qx " 

— = 1 + E 2<7wtf". 
1 - qx n= I 

Thus, if we multiply out the right-hand side of (7) and compare coefficients of 
xn, we obtain (2). If we replace x by -x in (7) and multiply the left- and 
right-hand sides of the resulting equation by the left- and right-hand sides, 
respectively, of (7), and then compare coefficients of xn, we obtain (3). 

From the Corollary to Theorem 8 of Redmond & Sivaramakrishnan [18], we have 

YJulnxn = (1 + qx) Y.unxYl • 
n=0 n= 0 

Combining this with (7) gives 

n=0 \n=0 /\n=0 

and if we multiply this out and compare coefficients of xn, we obtain 

2 n 
Un = E <7n~^2i-

i= 0 

From Theorem 9 of the same paper, we see that, for a fixed m > 1, 

(8) ]JT um+nxn = (um - qum-ix) £ « / " . 
rc = 0 ft = 0 

If we multiply out the right-hand side and compare coefficients of xn, we find 
that (8) is simply the expression in series form of the identity in (iii) of 
Theorem 2. 

6. Linear Combinations of Sequences 

In this section we shall obtain a result suggested by a theorem of Rankin 
on specially multiplicative functions ([17], Th. 5). We shall say that sequen-
ces {£Tnj)}, j = 1, . . . , k are linearly independent if the only complex numbers 
c\> • • • 9 ck f° r which 

ola(^) + ... + Cj^a^ = 0, for all n > 0, 

for all n > 0 are <?]_ = ••• = ck = 0. 
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Theorem 3: If p1 , . .., pk are distinct complex numbers and if u\J^ = un(p • , q) , 
for j = 1, . . . , k, then the sequences {u^} are linearly independent. 

Proof: Suppose that c1u(^) + — • + cku^} = 0, for n > 0. Then the first k of 
these equations form a system of k linear equations with c^, . .., ck as the 
unknowns, and the matrix of coefficients is [n-J'] , where i - 0, 1, . . . , k - 1 
and j = 1, . .., k. Its first row is 1, 1, ..., I and its second row is p, , p ? , 
. .., p, . Furthermore, as we have noted in Section 4, 

ill] 

r= 0 ^ = L ( - i ) T ;i>7-"2r<?1 

Thus, if i > 2, then by adding appropriate multiples of rows i - 2[i/2], . .., 
i - 2 to row i, the matrix can be transformed into one having pk, ..., pj for 
its ith row. The determinant of the matrix of coefficients is unchanged by 
this transformation. Thus, 

de t [ M
( / } ] 

1 
Pi 

f c - 1 

1 
Pi 

>r 

i 

,fe-i 
[1 (P; - P,-) * 0. 

1 < i < j < k 

Therefore, C\ = ••• = Cy = 0. 

Theorem 4: Let p13 ..., p, be distinct complex numbers and let u^} = un(p-, q) 
for j = 1, . . . , k. If, for complex numbers c ^ , . . . , c k , we have 

wn = c ^ ^ + .-. + cku^ = un(p, q), 

for some p and for all n > 0, then for some h with 1 < h < k, we have cJ/, = i, 
Cj = 0, for j * h and p = p h . 
Proof: We shall use identity (iv) of Theorem 2. We have, for all rn, n > 0 with 
m < n, 

k 
i„ = y^ ^ , o-(77' = y^ <7v' y^ ^ . ?. / , 0 -

i=0 j - I 
k 

L'/E^W?* = S ̂ ^M^-
Also , 

,/ = 1 i = 0 

T.CiWVn = E W y ( j ) 

Thus, i f w < «, 

(9) 
and a l s o 

0, 

ZM^-^f)^ o. 
Therefore, (9) holds for all ///, n > 0, without regard to the relative sizes of 
m and n. Hence, for each (fixed) /z, 

cj(un - uY/) = 0, for j = 1, ..., k. 
Since uQ = 1, we must have c- * 0 for some j . Suppose Cj * 0; then Un = W 
for all n > 0, and 

W 

(h) 

1990] 
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Thus, o-, = 1 and c- = 0, for j * h. Further, 
(h) Ph = u\ } = ul = p. 
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