ASYMPTOTIC POSITIVENESS OF LINEAR RECURRENCE SEQUENCES

Kenji Nagasaka
College of Engineering, Hosei University 3-7-2, Kajino-Cho, Koganei-Shi, Tokyo, 184, Japan
\section*{Jau-Shyong Shiue}
University of Nevada-Las Vegas, Las Vegas, NV 89154
(Submitted October 1988)

Dedicated to Professor L. Kuipers
 on the occasion of his 80th birthday

Suppose that the first several terms of a sequence are given, then it is not so easy to predict the asymptotic behavior of this sequence. But once we know that this given sequence is a linear recurrence sequence, we can determine the asymptotic behavior through its recurrence formula.

Indeed, John R. Burke and William A. Webb [1] considered real linear recurrence sequences $\left\{u_{n}\right\}_{n=0}^{\infty}$ of order d defined by

$$
\begin{equation*}
u_{n+d}=a_{d-1} u_{n+d-1}+a_{d-2} u_{n+d-2}+\cdots+a_{0} u_{n} \text { for } n \geq 0 \tag{1}
\end{equation*}
$$

where $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d-1}$ are real numbers, with its corresponding characteristic equation:

$$
\begin{equation*}
p(x)=x^{d}-a_{d-1} x^{d-1}-\cdots-a_{1} x-a_{0}=0 \tag{2}
\end{equation*}
$$

They obtained a criterion for the asymptotic positiveness of linear recurrence sequences (1) if the corresponding characteristic equation has distinct roots. Here we call a sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ asymptotically positive if there exists a natural number n_{0} such that

$$
u_{n}>0 \text { for all } n \geq n_{0}
$$

In particular, if the above n_{0} is equal to zero, we call this sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ totally positive.

In this note, we shall give a criterion of asymptotic positiveness of real linear recurrence sequences $\left\{u_{n}\right\}_{n=0}^{\infty}$ (1) of order d, when their characteristic equations have multiple roots.

Let us recall a general representation formula for u_{n}. We assume that the corresponding characteristic equation (2) of $\left\{u_{n}\right\}_{n=0}^{\infty}$ has roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ with corresponding multiplicities $m_{1}, m_{2}, \ldots, m_{p}$. Then there exist polynomials $b_{1}, b_{2}, \ldots, b_{p}$ with degree $b_{i} \leq m_{i}-1$ for $i=1,2, \ldots, p$, where the coefficients of polynomials $b_{1}, b_{2}, \ldots, b_{p}$ depend only on the roots of the characteristic equation (2) and the initial values of this recurrence sequence. Then, we have, for all $n \geq 0$,

$$
\begin{equation*}
u_{n}=b_{1}(n) \lambda_{1}^{n}+b_{2}(n) \lambda_{2}^{n}+\cdots+b_{p}(n) \lambda_{p}^{n} \tag{3}
\end{equation*}
$$

The detailed discussion of this representation (3) can be found, for example, in Władysław Narkiewicz [4] or Alecksei I. Markuševič [2].

Without loss of generality, we arrange the roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ according to their moduli as

$$
\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{p}\right|
$$

Suppose first that λ_{2} is the complex conjugate of λ_{1}, λ_{1} is not real, and

$$
\begin{equation*}
\left|\lambda_{1}\right|=\left|\lambda_{2}\right|>\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{p}\right| \tag{4}
\end{equation*}
$$

We assume further that the sum of the first two terms of (3), denoted by

$$
\begin{equation*}
v_{n}=b_{1}(n) \lambda_{1}^{n}+b_{2}(n) \lambda_{2}^{n} \tag{5}
\end{equation*}
$$

does not vanish for infinitely many n. Then

$$
\text { (6) } \quad u_{n}=v_{n}+o\left(v_{n}\right)
$$

holds for all sufficiently large n (see Nagasaka, Kanemitsu, \& Shiue [3]). Since $\left\{u_{n}\right\}_{n=0}^{\infty}$ is a real sequence, we get

$$
b_{2}(n)=\overline{b_{1}(n)}
$$

and

$$
\begin{aligned}
v_{n}=b_{1}(n) \lambda_{1}^{n}+b_{2}(n) \lambda_{2}^{n} & =b_{1}(n)\left(r e^{2 \pi i \theta}\right)^{n}+\overline{b_{1}(n)}\left(r e^{-2 \pi i \theta}\right)^{n} \\
& \left.=b_{1}(n) r^{n} e^{2 \pi i n \theta}+\overline{\left(b_{1}(n) r^{n} e^{2 \pi i n \theta}\right.}\right) \\
& =2 \operatorname{Re}\left\{b_{1}(n) r^{n} e^{2 \pi i n \theta}\right\},
\end{aligned}
$$

where $\lambda_{l}=r e^{2 \pi i \theta}$ and θ is not a multiple of π (since λ_{l} is not real). Now, if we write

$$
b_{1}(n)=c_{k} n^{k}+c_{k-1} n^{k-1}+\cdots+c_{0}
$$

where $c_{0}, c_{1}, \ldots, c_{k}$ are complex numbers determined by the roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$, and initial values $u_{0}, u_{1}, \ldots, u_{d-1}$ with nonzero $c_{k}, k \leq m_{1}-1$. Then

$$
\begin{aligned}
v_{n} & =2 \operatorname{Re}\left(c_{k} n^{k} r^{n} e^{2 \pi i n \theta}\right)+o\left(n^{k_{r} n}\right) \\
& =2 n^{k} r^{n} \operatorname{Re}\left(c_{k}\right) \cos (2 \pi n \theta)+o\left(n^{k_{r}}\right) \text { for large } n
\end{aligned}
$$

Since θ is not a multiple of π, v_{n} takes negative values for infinitely many n, by applying the same argument as in the proof of Theorem 1 in Burke $\&$ Webb [1]. Hence, by (6), the original linear recurrence sequence $\left\{u_{n}\right\}$ is not asymptotically positive for this case. Summarizing the above discussion, we have
Theorem 1: Suppose that the roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ of the characteristic equation of $\left\{u_{k^{\prime}}\right\}_{n=0}^{\infty}$ satisfy (4) and that λ_{1} and λ_{2} are complex conjugates of each other and are not real. Assume that v_{n} does not vanish for infinitely many n, then the linear recurrence sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ is not asymptotically positive.

Secondly, we assume again the relation (4) with real λ_{1} and λ_{2}, that is, $-\lambda_{2}=\lambda_{1}$. We denote the leading coefficients of the polynomials $b_{1}(n)+b_{2}(n)$ and $b_{1}(n)-b_{2}(n)$ by A and B, respectively, and assume further that $A B \neq 0$ for all sufficiently large n. Say that $b_{1}(n)+b_{2}(n)$ has degree $k, b_{1}(n)-b_{2}(n)$ has degree ℓ. Then (8) holds for all sufficiently large n. Hence, we have that, for all sufficiently large even n,
(7) $\quad u_{n}=A n^{k} \lambda_{l}^{n}+o\left(n^{k} \lambda_{l}^{n}\right)$
and, for all sufficiently large odd n, we get

$$
\begin{equation*}
u_{n}=B n^{\ell} \lambda_{1}^{n}+o\left(n^{l} \lambda_{1}^{n}\right) \tag{8}
\end{equation*}
$$

Thus, we obtain
Theorem 2: Suppose that the roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ of the characteristic equation of $\left\{u_{n}\right\}_{n=0}^{\infty}$ satisfy (4) and $0<\lambda_{1}=-\lambda_{2}$ that are real. Assume further that the leading coefficients A and B of the polynomials $b_{1}(n)+b_{2}(n)$ and $b_{1}(n)-b_{2}(n)$ are positive. Then $\left\{u_{n}\right\}_{n=0}^{\infty}$ is asymptotically positive.

We now leave assumption (4). Then, we have either

$$
\begin{equation*}
\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=\left|\lambda_{3}\right|=\cdots=\left|\lambda_{j}\right|>\left|\lambda_{j+1}\right| \geq \cdots \geq\left|\lambda_{p}\right| \tag{9}
\end{equation*}
$$

for some $j>2$, or
(10) $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{p}\right|$.

First, let us consider the case (10). From the fact that the coefficients of the characteristic equation $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d-1}$ are all real, λ_{1} must be real.

Also, if $b_{1}(n)$ is not identically zero, we get

$$
\begin{equation*}
u_{n}=C n^{m} \lambda_{1}^{n}+o\left(n^{m} \lambda_{1}^{n}\right), \tag{11}
\end{equation*}
$$

where C is the leading coefficient of the polynomial $b_{1}(n)$ of degree $m \leq m_{1}-1$. Thus, we obtain
Theorem 3: Suppose that the roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ of the characteristic equation of $\left\{u_{n}\right\}_{n=0}^{\infty}$ satisfy (10). Assume further that the polynomial $b_{1}(n)$ is not identically zero, that λ_{1} is positive, and that the leading coefficient C of $b_{1}(n)$ is also positive. Then the linear recurrence sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ is asymptotically positive.

For the remaining case (9), we need to divide into the following three subcases:
(i) j is even, all λ_{ℓ} are not real for $\ell=1,2, \ldots, j$ and $\lambda_{2 i}$ is the complex conjugate of $\lambda_{2 i-1}$ for $i=1,2, \ldots, j / 2$. We assume further that $b_{1}(n)$, $b_{2}(n), \ldots, b_{p}(n)$ do not vanish for all $n \geq n_{0}$.

Then, applying Theorem $1,\left\{u_{n}\right\}_{n=0}^{\infty}$ is not asymptotically positive.
(ii) j is even, $0<\lambda_{1}=-\lambda_{2}$ are real, all other λ_{ℓ} for $\ell=3,4, \ldots, j$ are not real, and $\lambda_{2 i}$ is the complex conjugate of $\lambda_{2 i-1}$ for $i=2,3, \ldots, j / 2$. We suppose again that $b_{1}(n), b_{2}(n), \ldots, b_{j}(n)$ do not vanish for all $n \geq n_{0}$.

Then $\left\{u_{n}\right\}_{n=0}^{\infty}$ is asymptotically positive if the leading coefficients A, B of $b_{1}(n)+b_{2}(n)$ and $b_{1}(n)-b_{2}(n)$, respectively, are both positive for all sufficiently large n and either

$$
\begin{aligned}
& \min \left\{\operatorname{deg}\left(b_{1}(n)+b_{2}(n)\right), \operatorname{deg}\left(b_{1}(n)-b_{2}(n)\right)\right\} \text { is greater than } \\
& i=2, \max _{3, \ldots, j / 2}\left\{\operatorname{deg}\left(2 \operatorname{Re}\left(b_{2 i-1}(n)\right)\right)\right\}
\end{aligned}
$$

or
$\min (A, B)-1$ is greater than all the leading coefficients of $2 \operatorname{Re}\left(b_{2 i-1}(n)\right)$ for which

$$
\begin{aligned}
& \min \left\{\operatorname{deg}\left(b_{1}(n)+b_{2}(n)\right), \operatorname{deg}\left(b_{1}(n)-b_{2}(n)\right)\right\} \\
& =\operatorname{deg}\left\{2 \operatorname{Re}\left(b_{2 i-1}(n)\right)\right\} \text { for } i=2,3, \ldots, j / 2 .
\end{aligned}
$$

(iii) j is odd, $0<\lambda_{1}$ is real, all other λ_{ℓ} are not real for $\ell=2,3, \ldots, j$ and $\lambda_{2 i+1}$ is the complex conjugate of $\lambda_{2 i}$ for $i=1,2, \ldots,[j / 2]$.

Then $\left\{u_{n}\right\}_{n=0}^{\infty}$ is asymptotically positive if the leading coefficient C of $b_{1}(n)$ is positive and either $\operatorname{deg}\left(b_{1}(n)\right)$ is greater than

$$
i=1,2, \ldots,[j / 2] \max \left\{\operatorname{deg}\left(2 \operatorname{Re}\left(b_{2 i}(n)\right)\right)\right\}
$$

or $C-1$ is greater than all the leading coefficients of $2 \operatorname{Re}\left(b_{2 i}(n)\right)$ for which

$$
\operatorname{deg}\left(b_{1}(n)\right)=\operatorname{deg}\left(2 \operatorname{Re}\left(b_{2 i}(n)\right)\right) \text { for } i=1,2, \ldots,[j / 2] .
$$

We assume always the nonvanishing property of all $b_{\ell}(n)$ for $\ell=1,2, \ldots, j$, for the case (9). If some of the $b_{\ell}(n)$ are identically zero, say $b_{k}(n)$, then we simply ignore these terms $b_{k}(n) \lambda_{k}^{n}$, and it is sufficient to trace the above discussion.

Finally, we give explicit conditions for a real linear recurrence sequence of order 2 or of order 3 to be asymptotically positive.

We denote $\left\{s_{n}\right\}_{n=0}^{\infty}$ a linear recurrence sequence of order 2 with recurrence formula $s_{n+2}=a_{1} s_{n+1}+a_{0} s_{n}$. First, we assume that its corresponding characteristic equation of degree 2 has only one real double root $\alpha \neq 0$. Then, $\alpha_{1}=$ 2α and $\alpha_{0}=-\alpha^{2}$ and the $n^{\text {th }}$ term s_{n} can be represented by

$$
s_{n}=\left(p_{1} n+p_{2}\right) \alpha^{n} \text { for } n \geq 0
$$

By solving the system of equations

$$
\left\{\begin{array}{l}
s_{0}=p_{2} \\
s_{1}=\left(p_{1}+p_{2}\right) \alpha
\end{array}\right.
$$

we obtain

$$
p_{1}=\left(s_{1}-s_{0} \alpha\right) / \alpha
$$

Applying the discussion of Theorem 3 above, we have
Theorem 4: Suppose the characteristic equation of a linear recurrence sequence $\left\{s_{n}\right\}_{n=0}^{\infty}$ has only one real double nonzero root α. Sequence $\left\{s_{n}\right\}_{n=0}^{\infty}$ is asymptotically positive if and only if $\alpha>0$ and either $s_{1}>s_{0} \alpha$ or $s_{0}>0$ and $s_{1}=s_{0} \alpha$.
Corollary 4.1: Under the same assumption as in Theorem 4, the sequence $\left\{s_{n}\right\}_{n=0}^{\infty}$ is asymptotically positive if and only if $\alpha_{1}>0$ and either $2 s_{1}>\alpha_{1} s_{0}$ or $s_{0}>0$ and $2 s_{1}=a_{1} s_{0}$.

By using the relation between α and the α_{i}^{\prime} 's, this Corollary follows immediately from Theorem 4.

Let us recall the case where the characteristic equation of a linear recurrence sequence $\left\{s_{n}\right\}_{n=0}^{\infty}$, that is,

$$
\begin{equation*}
\lambda^{2}-a_{1} \lambda-a_{0}=0 \tag{12}
\end{equation*}
$$

has two distinct roots.
Theorem 5: Let $D=a_{1}^{2}+4 \alpha_{0}$ be the discriminant of equation (12) of degree 2 . Suppose the characteristic equation of $\left\{s_{n}\right\}_{n=0}^{\infty}$ has two distinct roots α_{l} and α_{2}. This sequence $\left\{s_{n}\right\}_{n=0}^{\infty}$ is asymptotically positive if and only if \sqrt{D} is real and one of the following four conditions is satisfied:
(i) $a_{1}=0, s_{0}>0, s_{1}>0$.
(ii) $\alpha_{1}>0,2 s_{1}>\left(a_{1}-\sqrt{D}\right) s_{0}$.

$$
\begin{align*}
& \alpha_{1}>0,2 s_{1}=\left(\alpha_{1}-\sqrt{D}\right) s_{0}, s_{0}>0, \alpha_{0}<0 \tag{iii}\\
& \alpha_{1}<0,2 s_{1}=\left(a_{1}+\sqrt{D}\right) s_{0}, s_{0}>0, \alpha_{0}>0
\end{align*}
$$

Proof: Suppose first that \sqrt{D} is purely imaginary. Then α_{2} is the complex conjugate of α_{1} and the $n^{\text {th }}$ term s_{n} can be represented by

$$
s_{n}=c_{1} \alpha_{1}^{n}+\bar{c}_{1} \bar{\alpha}_{1}^{n}
$$

since $\left\{s_{n}\right\}_{n=0}^{\infty}$ is a sequence of real numbers. We now apply Theorem 1 .
For $\left\{s_{n}\right\}_{n=0}^{\infty}, v_{n}$, as defined by (5), is identical to s_{n}. The nonvanishing assumption of $s_{n}=v_{n}$ is naturally satisfied, since otherwise $\left\{s_{n}\right\}_{n=0}^{\infty}$ becomes the sequence of $0^{\prime} s$ which is not asymptotically positive. Hence, all assumptions of Theorem 1 are fulfilled. Thus, for purely imaginary $\sqrt{D},\left\{s_{n}\right\}_{n=0}^{\infty}$ is not asymptotically positive by Theorem 1.

Now we get necessarily that if \sqrt{D} is positive real then $\alpha_{1}>\alpha_{2}$. Condition (i) is already treated in the proof of Theorem 3 [1]. For the remaining cases, (ii), (iii), and (iv), we use a representation formula of s_{n},

$$
s_{n}=c_{1} \alpha_{1}^{n}+c_{2} \alpha_{2}^{n}
$$

with

$$
c_{1}=\frac{s_{1}-s_{0} \alpha_{2}}{\alpha_{1}-\alpha_{2}}, \quad c_{2}=\frac{s_{0} \alpha_{1}-s_{1}}{\alpha_{1}-\alpha_{2}}
$$

In addition to case (ii) treated already in Theorem 3 [1], we are forced to add condition (iii), since c_{1} may be zero. If $c_{1}=0$ with positive α_{1}, then

$$
s_{n}=\frac{s_{0} \alpha_{1}-s_{1}}{\alpha_{1}-\alpha_{2}} \alpha_{2}^{n} .
$$

Thus, we require that $s_{0} \alpha_{1}-s_{1}>0$ and $\alpha_{2}>0$, from which we deduce $u_{0}>0$ and $a_{0}<0$.

If $\alpha_{1}<0$ with real positive \sqrt{D}, then $\alpha_{2}<0$ and $\left|\alpha_{1}\right|<\left|\alpha_{2}\right|$. For asymptotic positiveness of $\left\{s_{n}\right\}_{n=0}^{\infty}$, we require that $c_{2}=0, c_{1}>0$, and $\alpha_{1}>0$. Rewriting these three conditions, we obtain (iv).

The sufficiency part of Theorem 5 is almost immediate from the representation formula of s_{n}. Q.E.D.

Remark: Combining Theorems 4 and 5, we obtain a complete characterization for asymptotic positiveness of linear recurrence sequences $\left\{s_{n}\right\}_{n=0}^{\infty}$ of order 2 in terms only of the coefficients of the recurrence formula and of the initial values.

Now we consider a linear recurrence sequence $\left\{t_{n}\right\}_{n=0}^{\infty}$ of order 3 with recurrence relation

$$
t_{n+3}=a_{2} t_{n+2}+a_{1} t_{n+1}+a_{0} t_{n}
$$

Burke \& Webb [1] give a sufficient condition for $\left\{t_{n}\right\}_{n=0}^{\infty}$ to be asymptotically positive.
Theorem 6: Suppose the characteristic equation of $\left\{t_{n}\right\}_{n=0}^{\infty}$ has distinct roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and that they satisfy either
(13) $\left|\alpha_{1}\right|>\left|\alpha_{2}\right| \geq\left|\alpha_{3}\right|$
or

$$
\left|\alpha_{1}\right|=\left|\alpha_{2}\right|>\left|\alpha_{3}\right| \text { and } \alpha_{2} \text { is the complex conjugate of } \alpha_{1} \text {. }
$$

If $\alpha_{1}>0$ and $c_{1}>0$, then $\left\{t_{n}\right\}_{n=0}^{\infty}$ is asymptotically positive where t_{n} is written as

$$
\begin{equation*}
t_{n}=c_{1} \alpha_{1}^{n}+c_{2} \alpha_{2}^{n}+c_{3} \alpha_{3}^{n} . \tag{14}
\end{equation*}
$$

Keeping the assumption of distinct roots, Theorem 6 does not cover the following cases:
(i) $\alpha_{1}=-\alpha_{2}$ with real α_{1}.
(ii) α_{2} is the complex conjugate of α_{1} and the roots satisfy

$$
\left|\alpha_{1}\right|=\left|\alpha_{2}\right|=\left|\alpha_{3}\right|
$$

Case (i) can be treated using Theorem 2; however, (ii) is a special case of (9) which brings certain difficulty to determine $\left\{t_{n}\right\}_{n=0}^{\infty}$ to be asymptotically positive.

Burke \& Webb give another elegant sufficient condition for $\left\{t_{n}\right\}_{n=0}^{\infty}$ to be asymptotically positive as Theorem 2 in [1], but they implicitly assume (13) and also that $c_{1} \neq 0$ in (14). In order to obtain the necessary and sufficient conditions for $\left\{t_{n}\right\}_{n=0}^{\infty}$ to be asymptotically positive as in Theorem 5 with the assumption of distinct roots, there are too many cases split according to the vanishingness of the coefficients in (14). We can treat all of these cases; however, we shall give necessary and sufficient conditions for $\left\{t_{n}\right\}_{n=0}^{\infty}$ to be asymptotically positive only when the characteristic equation has multiple roots, since originally we planned to generalize the results of Burke \& Webb [1] for multiple roots.

Thus, we assume that the characteristic equation of $\left\{t_{n}\right\}_{n=0}^{\infty}$ of order 3 has multiple roots. In order to determine conditions for $\left\{t_{n}\right\}_{n=0}^{\infty}$ to be asymptotically positive, Theorem 3 assumes that it is sufficient to consider only the following two cases:
(I) The corresponding characteristic equation of degree 3 has only one triple real root β.
(II) The corresponding characteristic equation of degree 3 has one double real root $\beta \neq 0$ and another real root γ with $|\beta| \geq|\gamma|$.
Let us treat case (I). The $n^{\text {th }}$ term t_{n} is represented by

$$
t_{n}=\left(q_{1} n^{2}+q_{2} n+q_{3}\right) \beta^{n} \text { for } n \geq 0
$$

Solving the system of equations

$$
\left\{\begin{array}{l}
t_{0}=q_{3} \\
t_{1}=\left(q_{1}+q_{2}+q_{3}\right) \beta \\
t_{2}=\left(4 q_{1}+2 q_{2}+q_{3}\right) \beta^{2}
\end{array}\right.
$$

we get

$$
q_{1}=\frac{t_{2}-2 t_{1}+t_{0} \beta^{2}}{2 \beta^{2}}, \quad q_{2}=\frac{-t_{2}+4 t_{1} \beta-3 t_{0} \beta^{2}}{2 \beta^{2}}, \quad q_{3}=t_{0}
$$

Thus, in case (I), the sequence $\left\{t_{n}\right\}_{n=0}^{\infty}$ is asymptotically positive if and only if $\beta>0$ and either

$$
\begin{equation*}
t_{2}-2 t_{1} \beta+t_{0} \beta^{2}>0 \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
t_{2}-2 t_{1} \beta+t_{0} \beta^{2}=0 \text { and }-t_{2}+4 t_{1} \beta-3 t_{0} \beta^{2}>0 \tag{16}
\end{equation*}
$$

or
(17) $\quad t_{2}-2 t_{1} \beta+t_{0} \beta^{2}=-t_{2}+4 t_{1} \beta-3 t_{0} \beta^{2}=0$ and $t_{0}>0$.

Condition (16) can be reduced to

$$
\begin{equation*}
t_{1}>t_{0} \beta \text { and } t_{2}=2 t_{1} \beta-t_{0} \beta^{2} \tag{18}
\end{equation*}
$$

Condition (17) can also be reduced to

$$
\begin{equation*}
t_{2}=t_{0} \beta^{2}, \quad t_{1}=t_{0} \beta, \quad \text { and } \quad t_{0}>0 \tag{19}
\end{equation*}
$$

Summarizing the above argument, we have
Theorem 7: Let $\left\{t_{n}\right\}_{n=0}^{\omega}$ be a linear recurrence sequence of order 3. Suppose the characteristic equation of $\left\{t_{n}\right\}_{n=0}^{\prime \prime}$ has only one triple real root β. The sequence $\left\{t_{n}\right\}_{n=0}^{\prime \prime}$ is asymptotically positive if and only if $a_{0}>0, a_{2}>0$, and one of the following three conditions holds:
(i) $3 t_{2}-2 \alpha_{2} t_{1}-\alpha_{1} t_{0}>0$.
(ii) $3 t_{2}-2 a_{2} t_{1}-\alpha_{1} t_{0}=0$ and $3 t_{2}-4 a_{2} t_{1}-3 a_{1} t_{0}<0$.
(iii) $3 t_{2}-2 a_{2} t_{1}-\alpha_{1} t_{0}=3 t_{2}-4 a_{2} t_{1}-3 a_{1} t_{0}=0$ and $t_{0}>0$.

These three conditions are mentioned in (15), (18), and (19) above. We need only rewrite them as the relations

$$
\alpha_{2}=3 \beta, \quad \alpha_{1}=-3 \beta^{2}, \quad \alpha_{0}=\beta^{3}
$$

since β is the triple multiple root of the characteristic equation

$$
\lambda^{3}-a_{2} \lambda^{2}-a_{1} \lambda-a_{0}=0 . \quad \text { Q.E.D. }
$$

$$
\begin{aligned}
& \text { For case (II), the } n^{\text {th }} \text { term } t_{n} \text { is represented by } \\
& t_{n}=\left(q_{1} n+q_{2}\right) \beta^{n}+h \gamma^{n} \text {. }
\end{aligned}
$$

Thus, we have

$$
h=\frac{\left(\beta^{2}+2 \gamma^{2}\right) t_{0}-2 \beta t_{1}+t_{2}}{(\beta-\gamma)^{2}}, \quad q_{1}=\frac{\gamma(\beta+2 \gamma) t_{0}-(\beta+\gamma) t_{1}+t_{2}}{\beta(\beta-\gamma)},
$$

and

$$
q_{2}=\frac{-\gamma(2 \beta+\gamma) t_{0}+2 \beta t_{1}-t_{2}}{(\beta-\gamma)^{2}}
$$

We now divide into two subcases:
(IIa) $|\beta|>|\gamma|$.
In this case, the sequence $\left\{t_{n}\right\}_{n=0}^{\infty}$ is asymptotically positive if and only if $\beta>0$ and either $q_{1}>0$ or $q_{1}=0$ and $q_{2}>0$ or $q_{1}=q_{2}=0$, $h>0$, and $\gamma>0$.
(IIb) $|\beta|=|\gamma|$.
In this case, the sequence $\left\{t_{n}\right\}_{n=0}^{\infty}$ is asymptotically positive if and only if either $\beta>0$ and $q_{1}>0$ or $\beta>0, \gamma>0, q_{1}=0, q_{2}+h>0$, and $q_{2}>h$ or $\beta<0, q_{1}=0, q_{2}+h>0$, and $q_{2}<h$ or $q_{1}=q_{2}=0, h>0$, and $r>0$.
Remark: For an arbitrary given linear recurrence sequence $\left\{t_{n}\right\}_{n=0}^{\infty}$, we can give explicit conditions for $\left\{t_{n}\right\}_{n=0}^{\infty}$ to be asymptotically positive when the characteristic equation has one real double root β and another real root γ with γ in terms of only the coefficients of the recurrence formula and of the initial values as in Theorem 6, since we have $\alpha_{2}=2 \beta+\gamma, a_{1}=-2 \beta \gamma-\beta^{2}$, and $\alpha_{0}=\beta^{2} \gamma$.

Acknowledgment

The authors would like to express their hearty thanks for the referee's valuable comments and suggestions.

References

1. J. R. Burke \& W. A. Webb. "Asymptotic Behavior of Linear Recurrences." Fibonacci Quarterly 19 (1981):318-21.
2. A. I. Markusevic. Recurrence Sequences (Russian), 2nd ed. Moscow: Izdat. "Nauka," 1975.
3. K. Nagasaka, S. Kanemitsu, \& J.-S. Shiue. "Benford's Law: The Logarithmic Law of First Digits." Proc. Conf. Classical Number Theory, Janos Bolyai Society (1990):361-91.
4. W. Narkiewicz. Uniform Distribution of Sequences of Integers in Residue Classes. Lecture Notes in Math., 1087. Berlin-Heidelberg-New York-Tokyo: Springer-Verlag, 1984.
