Neville Robbins

San Francisco State University, San Francisco, CA 94117 (Submitted September 1988)

Introduction

Let c and n be natural numbers. Let F_n denote the n^{th} Fibonacci number, that is $F_1 = F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$. Consider the equation (*) $F_n = cx^2$.

In [1], Cohn solved (*) for c = 1, 2. In [9], we found all solutions of (*) such that c is prime and either $c \equiv 3 \pmod{4}$ or c < 10,000. Harborth & Kemnitz [4] have asked for solutions of (*) for composite values of c. Clearly, it suffices to consider only squarefree values of c.

If $c \le 1000$, then c has at most three distinct odd prime factors. Therefore c = kp where p is prime and k = 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19,21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 38, 39, 42, 51, 55, 65, 66, or 70. Inthis paper, we solve (*) for each of the above values of <math>c. In the cases k =2, 13, 26, 34, our results are valid only for p < 10,000; in the other cases, there are no restrictions on p. These results are listed in Table 1. Combining these new results with those from [1] and [9], we obtain all solutions of (*) such that $1 \le c \le 1000$. We list these solutions in Table 2.

Preliminaries

Let p denote a prime, m a natural number. Let L_n denote the n^{th} Lucas number, that is $L_1 = 1$, $L_2 = 3$, $L_n = L_{n-1} + L_{n-2}$ for $n \ge 3$. Let $o_p(n) = k$ if $p^k || n$, where $k \ge 0$. Let (a/p) denote the Legendre symbol. Let $z(n) = \min\{m:n | F_m\}$. If p is odd and 2 | z(p), let $y(p) = \frac{1}{2}z(p)$.

- (1) $F_n = x^2$ iff n = 1, 2, or 12.
- (2) $F_n = 2x^2$ iff n = 3 or 6.

 $F_n \neq 6x^2$.

 $L_n \neq 6x^2$.

- (3) If $p \equiv 3 \pmod{4}$, then $F_n = px^2$ iff $(n, p, x^2) = (4, 3, 1)$.
- (4) If $p \equiv 1 \pmod{4}$ and p < 10,000, then $F_n = px^2$ iff
 - (n, p) = (5, 5), (7, 13), (11, 89), (13, 233), (17, 1597), or (25, 3001).
 - (6) $L_n = x^2$ iff n = 1 or 3.
 - (8) $L_n = 3x^2$ iff n = 2.
 - (10) $L_n = 7x^2$ iff n = 4.
 - (12) $L_n = 19x^2$ iff n = 9
 - (14) $L_{4n} \equiv 7 \pmod{8}$ if 3/n.
- (13) $L_n = 29x^2$ iff n = 7. (15) $5/L_n$, $13/L_n$, $17/L_n$ for all n.

 $L_n = 2x^2$ iff n = 6.

 $L_n = 11x^2$ iff n = 5.

- (16) If $m \ge 2$, then $m | F_n$ iff z(m) | n.
- $(17) F_{2n} = F_n L_n.$
- (18) If $m \ge 3$, then $F_m | F_n$ iff m | n.

(19)
$$(F_n, L_n) = \begin{cases} 2 & \text{if } 3|n, \\ 1 & \text{if } 3/n. \end{cases}$$

306

(5)

(7)

(9)

(11)

If $m \ge 2$, then $L_m | L_n$ iff n/m is odd. (20) $F_{3n}/F_n = L_n^2 - (-1)^n$. $L_{3n}/L_n = L_n^2 - 3(-1)^n$. (21)(22) $F_{5n}/5F_n = 5F_n^4 + 5(-1)^n F_n^2 + 1.$ (23) (24)5/F3n/Fn. $\begin{aligned} & F_{5n}/D_n = D_n^4 - 5(-1)^n D_n^2 + 5. \\ & z(p) \mid (p - e) \text{ where } e = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{5}, \\ -1 & \text{if } p \equiv \pm 2 \pmod{5}, \\ 0 & \text{if } p = 5. \end{cases} \end{aligned}$ (25) (26) $(F_m, F_n) = F_{(m, n)}.$ $(F_n, F_{kn}/F_n)|k.$ (27) (28) $F_{4n+1} + 2 = F_{2n-1}L_{2n+2}.$ (29) $(F_n, F_{5n}/5F_n) = 1.$ (30) (31) $F_{4n-1} + 2 = F_{2n+1}L_{2n-2}.$ (32) $(F_m, L_{m\pm n}) | L_n.$ $x^2 - 5y^2 = -4$ iff $x = L_n$, $y = F_n$ for some odd n. (33) If p is odd, $p|F_m$, and p|a, then $o_p(F_{pkam}/F_n) = k$. (34)(35) $2|F_{3m}/F_m$ iff 3/m. (36) $2|L_n$ iff 3|n. $3 \mid L_n \text{ iff } n \equiv 2 \pmod{4}$ $4 \mid L_n \text{ iff } n \equiv 3 \pmod{6}.$ (37) (38) $(F_n, F_{5n}/F_n) = \begin{cases} 5 & \text{if } 5 \mid n, \\ 1 & \text{if } 5 \mid n. \end{cases}$ $L_{2n} = L_n^2 - 2(-1)^n$. (39) (40)If k is odd, then $(L_n, L_{kn}/L_n) | k$. (41) $\mathcal{O}_2(L_n) = \begin{cases} 2 & \text{if } n \equiv 3 \pmod{6}, \\ 1 & \text{if } n \equiv 0 \pmod{6}, \\ 0 & \text{otherwise.} \end{cases}$ (42) If p is odd, then $p \mid L_n$ iff n = ky(p), k odd. (43) $F_{7m}/F_m = 125F_m^6 + 175(-1)^m F_m^4 + 70F_m^2 + 7(-1)^m.$ (44) $3|F_n$ iff 4|n. (45)

Remarks: (6), (7), (1), and (2) are Theorems 1 through 4 in [1]. (3) and (4) are Corollary 1 and Theorem 3 in [9], respectively. (5) and (9) follow from Lemmas 1 and 2 in [20], respectively. (8) and (10) are established in [2], (11) through (13) in [11]. (32) is Theorem 1 in [7]. (28) is Lemma 16 in [3], while (34) follows from Theorem 2 in [3]. (41) follows from Theorem 4 in [8]. (17), (18), (20), and (27) are I_7 , Theorem III, Theorem V, and Theorem III in [5], respectively. (40) follows from I_{15} and I_{18} in [5]. The other identities are elementary or well known.

The Main Results

Lemma 1: $L_{3m}/L_m = x^2$ iff m = 1.

Proof: If $L_{3m}/L_m = x^2$, then (22) implies $L_m^2 - 3(-1)^m = x^2$. If *m* is odd, then $L_m^2 = 1$, so m = 1. If *m* is even, then $L_m^2 = 4$, which is impossible, since *m* is a natural number. Conversely, $L_3/L_1 = 4 = 2^2$.

Lemma 2: $L_{3m}/L_m \neq 2x^2$.

Proof: Assume the contrary. Then (22) implies $L_m^2 - 3(-1)^m = 2x^2$. If 3|x, then $3|L_m$, so we get $\pm 3 \equiv 0 \pmod{9}$, an impossibility. If 3|x, then $L_m^2 \equiv 2x^2 \equiv 2 \pmod{3}$, an impossibility, since (2/3) = -1.

Lemma 3: If p is odd, then $F_{mp} \equiv (5/p)F_m \pmod{p}$.

Proof: This follows from (91) in [6] and Fermat's theorem, noting that $\Delta = 5$ for the Fibonacci sequence.

1990]

307

FIBONACCI NUMBERS OF THE FORM CX^2 , where $1 \le C \le 1000$

Lemma 4: If $p \equiv 3$ or 7 (mod 20), then $F_{mp}/F_m \neq x^2$.

Proof: Let $F_{mp}/F_m = x^2$. If $p \mid F_m$, then (34) implies $o_p(F_{mp}/F_m) = 1$, an impossibility. If $p \nmid F_m$, then Lemma 3 implies $F_{mp}/F_m \equiv (5/p) \pmod{p}$, so $x^2 \equiv (5/p) \pmod{p}$. (mod p). If $p \equiv 3$ or 7 (mod 20), then (5/p) = -1, so $x^2 \equiv -1 \pmod{p}$ and $p \equiv 3 \pmod{4}$, an impossibility.

Lemma 5: If $F_{3m}/F_m = 2x^2$, then m is odd or m = 2.

Proof: We must show that $F_{6j}/F_{2j} = 2x^2$ iff j = 1. Now, $F_6/F_2 = 8 = 2(2)^2$. If $F_{6j}/F_{2j} = 2x^2$, then (17), (18), and (20) imply $(F_{3j}/F_j)(L_{3j}/L_j) = 2x^2$. If 3/j, then (35) implies $2|F_{3j}/F_j$, so

$$(F_{3i}/2F_i)(L_{3i}/L_i) = x^2.$$

Let $d = (F_{3j}/2F_j, L_{3j}/L_j)$. Now, $d|(F_{3j}, L_{3j})$, so (19) implies d|2. We have $F_{3j}/2F_j = dy^2$, $L_{3j}/L_j = dz^2$.

Lemma 2 implies $d \neq 2$. Therefore, d = 1, so Lemma 1 implies j = 1. If j = 3k, then (35) implies $2|F_{9k}/F_{3k}$. Let $g = (F_{9k}/F_{3k}, L_{9k}/L_{3k})$. Then, $g|(F_{9k}, L_{9k})$, so (19) implies g|2. But $2|F_{9k}/F_{3k}$, so g = 1. Therefore,

$$F_{9k}/F_{3k} = y^2$$
, $L_{9k}/L_{3k} = z^2$,

which contradicts Lemma 1.

Lemma 6: $F_{3m}/F_m = 3x^2$ iff $(m, x^2) = (4, 16)$.

Proof: If $F_{3m}/F_m = 3x^2$, then (16) implies z(3) | 3m, so m = 4k. Now (21) implies $L_{4k}^2 - 1 = 3x^2$. If 3 | k, then (36) implies $2 | L_{4k}$, so $(L_{4k} + 1, L_{4k} - 1) = 1$, so $L_{4k} \pm 1 = u^2$. Now (40) implies $L_{2k}^2 - 1 = u^2$ or $L_{2k}^2 - 3 = u^2$, so $L_{2k}^2 = 1$ or 4, an impossibility. If 3 | k, then (36) implies $2 | L_{4k}$, so $(L_{4k} + 1, L_{4k} - 1) = 2$. In fact, (14) implies

$$\frac{L_{4k}+1}{8} \star \frac{L_{4k}-1}{2} = 3y^2.$$

Since the factors on the left are coprime, one of them must be a square. If $\frac{1}{2}(L_{4k} - 1) = v^2$, then (40) implies $L_{2k}^2 - 3 = 2v^2$, an impossibility, since (2/3) = -1. Therefore,

 $(L_{4k} + 1)/8 = u^2$ and $\frac{1}{2}(L_{4k} - 1) = 3v^2$.

Now $L_{4k} \equiv 1 \pmod{6}$ implies (6, k) = 1, so $L_{2k} \equiv 3 \pmod{4}$. (40) implies $L_{2k}^2 - 1 = 8u^2$, so $(L_{2k} + 1)(L_{2k} - 1) = 8u^2$. Since $2 \not| L_{4k}$, (40) also implies $2 \not| L_{2k}$, so $(L_{2k} + 1, L_{2k} - 1) = 2$. Thus, we have

 $L_{2k} + 1 = 4a^2$, $L_{2k} - 1 = 2b^2$.

Again (40) implies $L_k^2 + 3 = 4\alpha^2$, so that $L_k^2 = 1$, k = 1, m = 4, $x^2 = 16$. Conversely, $F_{12}/F_4 = 144/3 = 48 = 3(4)^2$.

Lemma 7: $F_{3m}/F_m \neq 6x^2$.

Proof: Assuming the contrary and reasoning as in the proof of Lemma 6, we have m = 4k and $L_{4k}^2 - 1 = 6x^2$. Since L_{4k} is odd, (36) and (14) imply

 $((L_{4k} + 1)/8)(L_{4k} - 1)/2) = 6\omega^2.$

Since the factors on the left are coprime, we have

 $(L_{4k} + 1)/8 = 2ay^2, \frac{1}{2}(L_{4k} - 1) = bz^2, ab = 3.$

If a = 1, then $L_{4k} = (4y)^2 - 1$, which contradicts Theorem 5 in [6]. If b = 1, then (14) implies $z^2 \equiv 3 \pmod{4}$, an impossibility.

308

Lemma 8: If $p | F_{5m}/F_m$, then p = 5 or $p \equiv 1 \pmod{10}$. Proof: If $p | F_{5m}/F_m$ and $p \neq 5$, then $p | F_{5m}/5F_m$, so (23) implies $5F_m^4 + 5(-1)^m F_m^2 + 1 \equiv 0 \pmod{p}$.

Since the discriminant is 5, we must have (5/p) = 1; therefore, (26) implies z(p) | (p-1). Now (16) implies $p | F_{p-1}$. The hypothesis implies $p | F_{5m}$; hence, $p | (F_{5m}, F_{p-1})$. (27) implies $p | F_{(5m, p-1)}$. (29) implies $p | F_m$, so $p | (F_m, F_{p-1})$. (27) also implies $p | F_{(m, p-1)}$; therefore, $(5m, p-1) \neq (m, p-1)$, so 5 | (p-1). Thus, $p \neq 2$, so $p \equiv 1 \pmod{10}$.

Lemma 9: $L_{5m}/L_m \neq x^2$.

Proof: Assume the contrary. Then (25) implies

 $L_m^4 - 5(-1)^m L_m^2 + 5 = x^2$.

The discriminant is $25 - 4(5 - x^2) = 4x^2 + 5$. Since our equation has integer roots, we must have $4x^2 + 5 = t^2$, so $x^2 = 1$, and $L_m^2 = (-1)^m$ or $4(-1)^m$. But then 2|m and $L_m^2 = 1$ or 4, an impossibility.

Lemma 10: If $F_n = x^2 - 2$ and $n \neq 2 \pmod{4}$, then $(n, x^2) = (3, 4)$ or (9, 36). *Proof:*

Case 1. Let n = 4m + 1. The hypothesis and (30) imply

$$F_{2m-1}L_{2m+2} = x^2$$
.

Let $d = (F_{2m-1}, L_{2m+2})$. (32) implies $d \mid L_3$, that is, $d \mid 4$. If d = 1 or 4, then F_{2m-1} and L_{2m+2} are squares, which contradicts (6). If d = 2, then $F_{2m-1} = 2y^2$ and $L_{2m+2} = 2z^2$. (2) implies 2m - 1 = 3, so n = 9 and $x^2 = 36$.

Case 2. Let n = 4m - 1. The hypothesis and (31) imply

 $F_{2m+1}L_{2m-2} = x^2$.

As in Case 1, we must have $(F_{2m+1}, L_{2m-2}) = 2$, so $F_{2m+1} = 2y^2$, $L_{2m-2} = 2z^2$. (2) implies 2m + 1 = 3, so n = 3 and $x^2 = 4$.

<u>Case 3</u>. Let n = 4m. Then $F_n \equiv 0$, 3, or 5 (mod 8). But $x^2 - 2 \equiv 6$, 7, or 2 (mod 8). Therefore, $F_n \neq x^2 - 2$.

Lemma 11: $F_{5m}/5F_m = x^2$ iff $m = x^2 = 1$.

Proof: Let $F_{5m}/5F_m = x^2$. If m = 2k, then (17), (18), and (20) imply

$$(F_{5k}/5F_k)(L_{5k}/L_k) = x^2$$

Let $d = (F_{5k}/5F_k, L_{5k}/L_k)$. Then $d | (F_{5k}, L_{5k})$, so (19) implies d/2. But Lemma 8 implies $2 | F_{5m}/5F_m$, so d = 1. Therefore, both $F_{5k}/5F_k$ and L_{5k}/L_k are squares, which contradicts Lemma 9. If 2 | m, then (23) implies

$$5F_m^4 - 5F_m^2 + 1 = x^2$$
.

The discriminant is $25 - 20(1 - x^2) = 20x^2 + 5$. Since the preceding equation has integer roots, we must have $20x^2 + 5 = t^2$, but then 5|t, so $t^2 = 25w^2$, and $4x^2 + 1 = 5w^2$. Therefore $(4x)^2 - 5(2w)^2 = -4$. Now (33) implies that there exists odd *n* such that $F_n = 2w$, $L_n = 4x$. Also

 $F_m^2 = (5 \pm 5\omega)/10 = (1 \pm \omega)/2.$

Since $F_m^2 > 0$, we have $F_m^2 = \frac{1}{2}(1 + \omega)$. Therefore, $F_n = 4F_m^2 - 2$. Since *n* is odd, Lemma 10 implies $F_m = 1$ or 3. Now *m* is odd, so $F_m \neq 3$. Therefore, $F_m = 1$, so $m = x^2 = 1$. Conversely, $F_5/5F_1 = 1^2$.

Remark: Let $F_m = F_m^*F_m$, where $(F_m^*, F_d) = 1$ for all d < m. F_m^* is called the primitive part of F_m . In particular,

1990]

309

$$F_{5p}^{*} = F_{5p}/F_{5}F_{p} = F_{5p}/5F_{p}$$
 (if $p \neq 5$).

Lemma 11 implies $F_{5p}^* \neq x^2$.

Lemma 12: $F_{9m}/F_m \neq px^2$.

Proof: If $F_{9m}/F_m = px^2$, let $d = (F_{3m}/F_m, F_{9m}/F_{3m})$. Now $d|(F_{3m}, F_{9m}/F_{3m})$; thus, (28) implies d|3. If d = 1, then F_{3m}/F_m or F_{9m}/F_{3m} is a square, which contradicts Lemma 4. If d = 3, then $F_{3k}/F_k = 3y^2$, where k = m or 3m. Lemma 6 implies k = 4 = m. But $F_{36}/F_4 \neq px^2$. The case $F_{9m}/F_m = x^2$ is similar.

Lemma 13: $F_{7m}/F_m \neq 7x^2$.

Proof: Let *m* be the least integer such that there exists *x* such that $F_{7m}/F_m = 7x^2$. Now $7|F_{7m}$, so (16) implies z(7)|7m, so 8|m. Let m = 2k. (17), (18), and (20) imply

$$(F_{7\nu}/F_{\nu})(L_{7\nu}/L_{\nu}) = 7x^2$$
.

Let $d = (F_{7k}/F_k, L_{7k}/L_k)$. Therefore, $d | (F_{7k}, L_{7k})$, so (19) implies d | 2. But (44) implies F_{7k}/F_k is odd, so d = 1. Therefore, $F_{7k}/F_k = y^2$ or $7y^2$. But the first possibility contradicts Lemma 4, while the second possibility contradicts the minimality of m.

Lemma 14: If p and y(p) are odd, then $L_n \neq 2px^2$.

Proof: If $L_n = 2px^2$, then the hypothesis implies $o_2(L_n)$ is odd, so (42) implies 6/n. But the hypothesis and (43) imply n is odd, a contradiction.

Lemma 15: If $p \equiv 5$ or 7 (mod 8), then $L_n \neq 2px^2$.

Proof: Let $L_n = 2px^2$. Then (36) implies n = 3m, so that $L_m(L_{3m}/L_m) = 2px^2$. Let $d = (L_m, L_{3m}/L_m)$. (41) implies $d|_{3}$.

<u>Case 1</u>. d = 1. (22) implies $3/L_m$, so (37) implies $m \neq 2 \pmod{4}$. We have $L_m = ay^2$, $L_{3m}/L_m = bz^2$, with ab = 2p, so $a \mid 2$ or $b \mid 2$. If a = 1, then b = 2p and (6) implies m = 1 or 3. But $L_3/L_1 = 4 \neq 2pz^2$; $L_9/L_3 = 19 \neq 2pz^2$. If a = 2, then (7) implies m = 6, an impossibility. If b = 1, then a = 2p and Lemma 1 implies m = 1, so $L_1 = 1 \neq 2pz^2$. Lemma 2 implies $b \neq 2$.

<u>Case 2</u>. d = 3. Then $L_m = 3ay^2$, $L_{3m}/L_m = 3bz^2$, with $a \mid 2$ or $b \mid 2$. If a = 1, then b = 2p, and (8) implies m = 2, but $L_6/L_2 = 6 \neq 6pz^2$. (9) implies $a \neq 2$. (37) implies $m \equiv 2 \pmod{4}$, so (22) implies $L_m^2 - 3 = 3bz^2$. Therefore, $3bz^2 \equiv -3 \pmod{9}$, so $bz^2 \equiv -1 \pmod{3}$; thus, $b \neq 1$. If b = 2, then $L_m^2 \equiv 3 \pmod{6}$, which implies $m = 12k \pm 2$. Since a = p, we have $L_{12k\pm 1}^2 = 3py^2$. (40) implies $L_{6k\pm 1}^2 + 2 = 3py^2$. Therefore, (-2/p) = 1, which is impossible if $p \equiv 5$ or 7 (mod 8).

Lemma 16: Let $F_n = kpx^2$, where 2|z(k). Then 2|n and $F_{l_2n} = day^2$, $L_{l_2n} = dbz^2$, where

 $d = (F_{\frac{1}{2}n}, L_{\frac{1}{2}n}) = \begin{cases} 2 & \text{if } 3 \mid n \\ 1 & \text{if } 3 \nmid n \end{cases}, ab = kp, (a, b) = 1, and dyz = x.$

Proof: The hypothesis, (16), and (17) imply 2|n, $F_{\frac{1}{2}n}L_{\frac{1}{2}n} = kpx^2$. The conclusion now follows from (19).

Theorem 1: $F_n \neq 6px^2$.

Proof: Assume the contrary. Then (16) implies $z(6) \mid n$, so n = 12m. (38) and Lemma 16 imply $F_{6m} = 4ay^2$, $L_{6m} = 2bz^2$, ab = 3p. If a = 1, b = 3p; hence, (37) implies *m* is odd. But (1) implies *m* = 2, an impossibility. (3) implies $a \neq 3$. If b = 1, then a = 3p, so (45) implies $2 \mid m$, but (7) implies *m* = 1, an impossibility. (9) implies $b \neq 3$.

Theorem 2: $F_n = 3px^2$ iff $(n, p, x^2) = (8, 7, 1)$ or (12, 3, 16).

310

Proof: Assume $F_n = 3px^2$. (16) implies z(3) | n, so n = 4m. Lemma 16 implies $F_{2m} = day^2$, $L_{2m} = 2bz^2$, $d = (F_{2m}, L_{2m})$, ab = 3p. If $3 \nmid m$, then (19) implies d = 1, so either $F_{2m} = y^2$ or $3y^2$, or $L_{2m} = z^2$ or $3z^2$. (1), (3), (6), and (8) imply 2m = 2 or 4, so n = 4 or 8. Now $F_4 = 3 \neq 3px^2$. $F_8 = 21 = 3px^2$ implies p = 7, n = 8, $x^2 = 1$. If m = 3k, then (19) implies d = 2, so either $F_{6k} = 2y^2$ or $6y^2$, or $L_{2k} = 2z^2$ or $6z^2$. (2), (5), (7), and (9) imply 6k = 6, so n = 12. Now $F_{12} = 144$, so p = 3, n = 12, $x^2 = 16$. Conversely, $F_8 = 21$ and $F_{12} = 144$.

Theorem 3: Let $2 . Then <math>F_n = 2px^2$ iff $(n, p, x^2) = (9, 17, 1)$.

Proof: If $F_n = 2px^2$, then (16) implies z(2) | n, so n = 3m and $F_m(F_{3m}/F_m) = 2px^2$. Let $d = (F_m, F_{3m}/F_m)$. (28) implies d | 3. If d = 1, then $F_m = ay^2$, $F_{3m}/F_m = bz^2$, ab = 2p. If a = 1, then $2 F_{3m}/F_m$. Therefore, (1) and (35) imply m = 1 or 2, so n = 3 or 6. But $F_3 = 2 \neq 2px^2$; $F_6 = 8 \neq 2px^2$. If a = 2, then b = p and (2) implies m = 3 or 6, so n = 9 or 18. Now $F_{18}/F_6 \neq px^2$. $F_9/F_3 = 17$, so, if n = 9, then p = 17, $x^2 = 1$. Lemma 4 implies b = 1. If b = 2, then $F_m = py^2$. Since $F_2 = 1 = py^2$, Lemma 5 implies m is odd. Therefore, (3), (4), and the hypothesis imply m = 5, 7, 11, 13, 17, or 25. But none of the corresponding values of $F_{3m}/2F_m$ is a square. If d = 3, then $F_m = 3ay^2$, $F_{3m}/F_m = 3bz^2$, ab = 2p. If a = 1, then b = 2p. (3) implies m = 4, but $F_{12}/F_4 = 48 = 6pz^2$, so p = 2, contrary to the hypothesis. (5) implies $a \neq 2$. If b = 1, then a = 2p, which contradicts Theorem 1. If b = 2, then $F_{3m}/F_m = 6z^2$, which contradicts Lemma 7. Conversely, $F_9 = 34$.

Theorem 4: $F_n = 5px^2$ iff $(n, p, x^2) = (10, 11, 1)$.

Proof: If $F_n = 5px^2$, then (16) implies z(5) | n, so n = 5m, and $F_m(F_{5m}/F_m) = 5px^2$, so $F_m(F_{5m}/5F_m) = px^2$. Now (29) implies either (i) $F_m = y^2$, $F_{5m}/5F_m = pz^2$, or (ii) $F_m = py^2$, $F_{5m}/5F_m = z^2$. If (i) holds, then (1) implies m = 1, 2, or 12. We get a contradiction unless m = 2, n = 10, p = 11, $x^2 = 1$. If (ii) holds, then Lemma 11 implies m = 1, so $F_1 = 1 = py^2$, an impossibility. Conversely, $F_{10} = 55$.

Theorem 5: $F_n = 7px^2$ iff $(n, p, x^2) = (8, 3, 1)$.

Proof: If $F_n = 7px^2$, then (16) implies z(7) | n, so n = 8m. If $3 \nmid m$, then Lemma 16 implies $F_{4m} = ay^2$, $L_{4m} = bz^2$, ab = 7p. If a = 1, then (1) implies m = 3, a contradiction. (3) implies $a \neq 7$. (6) implies $b \neq 1$. If b = 7, then (10) implies 4m = 4, so n = 8, p = 3, $x^2 = 1$. If m = 3k, then Lemma 16 implies $F_{12k} = 2ay^2$, $L_{12k} = 2bz^2$, ab = 7p. (2) implies $a \neq 7$. Conversely, $F_8 = 21$.

Theorem 6: $F_n \neq 15px^2$.

Proof: Assume the contrary. Then (16) implies z(15) | n, so n = 20m. If $3 \nmid m$, then (15) and Lemma 16 imply $F_{10m} = 5ay^2$, $L_{10m} = bz^2$, ab = 3p. Now (4) implies $a \neq 1$. Theorem 2 implies $a \neq 3$. (6) and (8) imply $b \neq 1$ and 3, respectively. If m = 3k, then (15) and Lemma 16 imply $F_{30k} = 10ay^2$, $L_{30k} = 2bz^2$, ab = 3p. Theorems 3 and 1 imply $a \neq 1$ and 3, respectively. (7) and (9) imply $b \neq 1$ and 3, respectively.

Theorem 7: $F_n = 10px^2$ iff $(n, p, x^2) = (15, 61, 1)$.

Proof: If $F_n = 10px^2$, then (16) implies z(10) | n, so n = 15m, and $F_{5m}(F_{15m}/F_{5m}) = px^2$. Let $d = (F_{5m}, F_{15m}/F_{5m})$. (28) implies d | 3. (24) implies $F_{5m} = day^2$, $F_{15m}/F_{5m} = dbz^2$, ab = 2p. Suppose d = 1. If a = 1, then b = 2p and (4) implies 5m = 5, so $F_{15}/F_5 = 122 = 2pz^2$. Therefore, p = 61, n = 15, $x^2 = 1$. Theorem 3 implies $a \neq 2$. Lemma 4 implies $b \neq 1$. If b = 2, then a = p, so Theorem 4 implies 5m = 10. But $F_{30}/F_{10} \neq 2z^2$. Now suppose that d = 3. Then $F_5 = 15ay^2$, $F_{15}/F_5 = 3bz^2$, ab = 2p. Theorems 2 and 1 imply, respectively, $a \neq 1$ and 2. Lemmas 6 and 7 imply, respectively, $b \neq 1$ and 2. Conversely, $F_{15} = 610$.

1990]

Theorem 8: $F_n = 11px^2$ iff $(n, p, x^2) = (10, 5, 1)$.

Proof: If $F_n = 11px^2$, then (16) implies z(11) | n, so n = 10m. If $3 \nmid m$, then Lemma 16 implies $F_{5m} = ay^2$, $L_{5m} = bz^2$, where ab = 11p, so a or b = 1 or 11. (1) and (3) imply, respectively, $a \neq 1$ and 11. (6) implies $b \neq 1$. If b = 11, then a = p. Now (11) implies 5m = 5, so p = 5, n = 10, and $x^2 = 1$. If m = 3k, then Lemma 16 implies $F_{15k} = 2ay^2$, $L_{15k} = 2bz^2$, with a and b as above. (2) implies $a \neq 1$. Theorem 3 implies $a \neq 11$. (6) implies $b \neq 1$. If b = 11, then $L_{15k} = 22z^2$. But since y(11) = 5, this contradicts Lemma 14. Conversely, $F_{10} = 55$.

Theorem 9: Let $p < 10^4$. Then $F_n = 13px^2$ iff $(n, p, x^2) = (14, 29, 1)$.

Proof: If $F_n = 13px^2$, then (16) implies z(13) | n, so n = 7m, and $F_m(F_{7m}/F_m) = 13px^2$. Let $d = (F_m, F_{7m}/F_m)$. (28) implies d | 7. If d = 1, then $F_m = ay^2$, $F_{7m}/F_m = bz^2$, ab = 13 p, so a or b = 1 or 13. If a = 1, then (1) implies m = 1, 2, or 12. We get a contradiction unless m = 2, in which case n = 14, p = 29, $x^2 = 1$. If a = 13, then b = p and (4) implies m = 7. But $F_{49}/F_7 \neq pz^2$. Lemma 4 implies $b \neq 1$. If b = 13, then a = p. Now, the hypothesis and (4) imply m = 4, 5, 7, 11, 13, 17, or 25. In each case, $F_{7m}/F_m \neq pz^2$. If d = 7, then (16) implies z(7) | m, so m = 8k, and we have $F_{8k} = 7ay^2$, $F_{56k}/F_{8k} = 7bz^2$, ab = 13p. (3) implies $a \neq 1$. Theorem 5 implies $a \neq 13$. Lemma 13 implies $b \neq 1$. If b = 13, then z = p, so Theorem 5 implies 8k = 8. But then $F_{56}/91F_8 = z^2$, an impossibility. Conversely, $F_{14} = 377$.

Theorem 10: $F_n = 14px^2$ iff $(n, p, x^2) = (24, 23, 144)$.

Proof: If $F_n = 14px^2$, then (16) implies z(14) | n, so n = 24m. (38) and Lemma 16 imply $F_{12m} = 4ay^2$, $L_{12m} = 2bz^2$, ab = 7p. If a = 1, then (1) implies 12m = 12, from which it follows that n = 24, p = 23, $x^2 = 144$. (3) implies $a \neq 7$. (7) implies $b \neq 1$. Lemma 15 implies $b \neq 7$. Conversely, $F_{24} = 46368$.

Theorem 11: $F_n = 17px^2$ iff $(n, p, x^2) = (9, 2, 1)$.

Proof: If $F_n = 17px^2$, then (16) implies z(17) | n, so n = 9m and $F_m(F_{9m}/F_m) = 17px^2$. Let $d = (F_m, F_{9m}/F_m)$. (28) implies d | 9. Now $F_m = day^2$, $F_{9m}/F_m = dbz^2$, ab = 17p. If d = 1 or 9, then Lemma 12 implies $b \neq 1$, 17, p. Therefore, b = 17p and a = 1, so (1) implies m = 1, 2, or 12. We have a contradiction unless m = 1, in which case $F_9/17F_1 = 2 = pz^2$, so p = 2, n = 9, $x^2 = 1$. If d = 3, then $o_3(F_{9m}/F)$ is odd, but (34) implies $o_3(F_{9m}/F_m) = 2$. Conversely, $F_9 = 34$.

Theorem 12: $F_n \neq 19px^2$.

Proof: Assume the contrary. Then (16) implies z(19) | n, so n = 18m. Lemma 16 implies $F_{9m} = 2ay^2$, $L_{9m} = 2bz^2$, ab = 19p. (2) implies $a \neq 1$. Theorem 3 implies $a \neq 19$. (7) implies $b \neq 1$. Since y(19) = 9, Lemma 14 implies $b \neq 19$.

Theorem 13: $F_n = 21px^2$ iff $(n, p, x^2) = (16, 47, 1)$.

Proof: If $F_n = 21px^2$, then (16) implies z(21) | n, so n = 8m. (37) implies $3/L_{4m}$. If 3/m, then Lemma 16 implies $F_{4m} = 3ay^2$, $L_{4m} = bz^2$, with ab = 7p. If a = 1, then (3) implies 4m = 4, so $L_4 = 7 = 7pz^2$, an impossibility. If a = 7, then Theorem 2 implies 4m = 8 and $L_8 = 47 = pz^2$, so p = 47, n = 16, and $x^2 = 1$. (6) implies $b \neq 1$. If b = 7, then (10) implies 4m = 4, so $F_4 = 3 = 3pz^2$, an impossibility. If m = 3k, then Lemma 16 implies $F_{12k} = 6ay^2$, $L_{12k} = 2bz^2$, ab = 7p. (5) implies $a \neq 1$. Theorem 1 implies $a \neq 7$, $a \neq p$. (7) implies $b \neq 1$. Conversely, $F_{16} = 987$.

Theorem 14: $F_n \neq 22px^2$.

Proof: Assume the contrary. Then (16) implies $z(22) \mid n$, so n = 30m. Lemma 16 implies $F_{15m} = 2ay^2$, $L_{15m} = 2bz^2$, ab = 22p, so $a \mid 22$ or $b \mid 22$. Now (2) and (1) imply $a \neq 1$ and 2, respectively. Theorem 3 implies $a \neq 11$. (3) implies

312

 $a \neq 22$. (7) and (6) imply $b \neq 1$ and 2, respectively. Lemma 14 implies $b \neq 11$. (11) implies $b \neq 22$.

Theorem 15: $F_n \neq 23px^2$.

Proof: Assume the contrary. Then (16) implies z(23)|n, so n = 24m. Lemma 16 implies $F_{12m} = 2ay^2$, $L_{12m} = 2bz^2$, ab = 23p. (2) implies $a \neq 1$. Theorem 3 implies $a \neq 23$. (7) implies $b \neq 1$. Lemma 15 implies $b \neq 23$.

Theorem 16: Let $p < 10^4$. Then $F_n = 26px^2$ iff $(n, p, x^2) = (21, 421, 1)$.

Proof: If $F_n = 26px^2$, then (16) implies z(26) n, so n = 21m and $F_{7m}(F_{21m}/F_{7m}) = 26px^2$. Let $d = (F_{7m}, F_{21m}/F_{7m})$. (28) implies $d \mid 3$. (34) implies $13 \nmid F_{21m}/F_{7m}$. Therefore, if d = 1, we have $F_{7m} = 13ay^2$, $F_{21m}/F_{7m} = bz^2$, ab = 2p. If a = 1, then (4) implies 7m = 7, so $F_{21}/2F_7 = 421 = pz^2$. Therefore, p = 421, n = 21, and $x^2 = 1$. Theorem 3 implies $a \neq 2$. Lemma 4 implies $b \neq 1$. If b = 2, then $F_7 = 13py^2$. The hypothesis and Theorem 9 imply 7m = 14. But $F_{42}/F_{14} \neq 2z^2$. If d = 3, then (16) implies $z(3) \mid 7m$, that is, $4 \mid 7m$, so 7m = 28k. We now have $F_{28k} = 39ay^2$, $F_{84k}/F_{28k} = 3bz^2$, with ab = 2p. Theorems 2 and 1 imply $a \neq 1$ and 2, respectively. Lemmas 6 and 7 imply $b \neq 1$ and 2, respectively. Conversely, $F_{21} = 10346$.

Theorem 17: $F_n = 29px^2$ iff $(n, p, x^2) = (14, 13, 1)$.

Proof: If $F_n = 29px^2$, then (16) implies z(29) | n, so n = 14m. If $3 \nmid m$, then Lemma 16 implies $F_{7m} = ay^2$, $L_{7m} = bz^2$, ab = 29p. (1) implies $a \neq 1$. (4) implies $a \neq 29$. (6) implies $b \neq 1$. If b = 29, then $F_{7m} = py^2$. (13) implies 7m = 7, so $F_7 = 13 = py^2$. Therefore, p = 13, n = 14, $x^2 = 1$. If m = 3k, then Lemma 16 implies $F_{21k} = 2ay^2$, $L_{21k} = 2bz^2$, ab = 29p. (2) implies $a \neq 1$. Theorem 3 implies $a \neq 29$. (7) implies $b \neq 1$. Since y(29) = 7, Lemma 14 implies $b \neq 29$. Conversely, $F_{14} = 377$.

Theorem 18: $F_n \neq 30px^2$.

Proof: Assume the contrary. Then (16) implies $z(30) \mid n$, so n = 60m. Lemma 16 implies $F_{30m} = 2ty^2$, $L_{30m} = 2bz^2$, tb = 30p. But (15) and (42) imply (b, 10) = 1, so $F_{30m} = 20ay^2$, $L_{30m} = 2bz^2$, ab = 3p. If a = 1, then $F_{30m} = 5(2y)^2$, which contradicts (4). Theorem 2 implies $a \neq 3$. (7) implies $b \neq 1$. (9) implies $b \neq 3$.

Theorem 19: $F_n \neq 31px^2$.

Proof: Assume the contrary. Then (16) implies $z(31) \mid n$, so n = 30m. Lemma 16 implies $F_{15m} = 2ay^2$, $L_{15m} = 2bz^2$, ab = 31p. (2) implies $a \neq 1$. Theorem 3 implies $a \neq 31$. (7) implies $b \neq 1$. Lemma 15 implies $b \neq 31$.

Theorem 20: $F_n \neq 33px^2$.

Proof: Assume the contrary. Then (16) implies $z(33) \mid n$, so n = 20m. (43) implies $11 \nmid L_{10m}$. If $3 \nmid m$, then Lemma 16 implies $F_{10m} = 11ay^2$, $L_{10m} = bz^2$, ab = 3p. (3) implies $a \neq 1$. Theorem 2 implies $a \neq 3$. (6) and (8) imply $b \neq 1$ and 3, respectively. If m = 3k, then Lemma 16 implies $F_{30k} = 22ay^2$, $L_{30k} = 2bz^2$, ab = 3p. Theorems 3 and 1 imply $a \neq 1$ and 3, respectively. (7) and (9) imply $b \neq 1$ and 3, respectively.

Theorem 21: If $p < 10^4$, then $F_n = 34px^2$ iff $(n, p, x^2) = (18, 19, 4)$.

Proof: If $F_n = 34px^2$, then (16) implies z(34) | n, so n = 9m and $F_{3m}(F_{9m}/F_{3m}) = 34px^2$. Let $d = (F_{3m}, F_{9m}/F_{3m})$. (28) implies d | 3. (35) implies $2|F_{9m}/F_{3m}$. If d = 1, then $F_{3m} = 2ay^2$, $F_{9m}/F_{3m} = bz^2$, ab = 17p. If a = 1, then b = 17p and (2) implies 3m = 3 or 6. If 3m = 3, then $F_9/17F_3 = 1 \neq pz^2$. If 3m = 6, then $F_{18}/17F_6 = 19 = pz^2$, so p = 19; hence, n = 18 and $x^2 = 4$. If a = 17, then b = p, and Theorem 3 implies 3m = 9. But $F_{27}/F_9 \neq pz^2$. Lemma 4 implies $b \neq 1$.

1990]

If b = 17, then $F_{3m} = 2py^2$. But the hypothesis and Theorem 3 imply p = 17, so 17 | d, an impossibility. If d = 3, then (45) imlies m = 4k, so $F_{12k} = 6ay^2$, $F_{36k}/F_{12k} = 3bz^2$, ab = 17p. (5) implies $a \neq 1$. Theorem 1 implies $a \neq 17$, p. Lemma 6 implies $b \neq 1$. Conversely, $F_{18} = 2584$.

Theorem 22: $F_n \neq 35px^2$.

Proof: Assume the contrary. Then (16) implies $z(35) \mid n$, so n = 40m. If $3 \nmid m$, then (15) and lemma 16 imply $F_{20m} = 5ay^2$, $L_{20m} = bz^2$, ab = 7p. (4) implies $a \neq 1$. Theorem 4 implies $a \neq 7$, $a \neq p$, so $b \neq 7$. (6) implies $b \neq 1$. If m = 3k, then (15) and Lemma 16 imply $F_{60k} = 10ay^2$, $L_{60k} = 2bz^2$, ab = 7p. Theorem 3 implies $a \neq 1$. Theorem 7 implies $a \neq 7$, $a \neq p$, so $b \neq 7$. (7) implies $b \neq 1$.

We omit the proofs of the two following theorems (23 and 24) because they are similar to proofs of prior theorems.

Theorem 23: $F_n = 38px^2$ iff $(n, p, x^2) = (18, 17, 4)$.

Theorem 24: $F_n \neq 39px^2$.

Theorem 25: $F_n \neq 42px^2$.

Proof: Assume the contrary. Then (16) implies z(42) | n, so n = 24m. (37) implies $3/L_{12m}$; (38) implies $4/L_{12m}$. Therefore, Lemma 16 implies $F_{12m} = 12ay^2$, $L_{12m} = 2bz^2$, ab = 7p. (3) implies $a \neq 1$. Theorem 2 implies $a \neq 7$. (7) implies $b \neq 1$. Lemma 15 implies $b \neq 7$.

Theorem 26: $F_n \neq 51px^2$.

Proof: Assume the contrary. Then (16) implies z(51) n, so n = 36m. (15), (37), and Lemma 16 imply $F_{18m} = 102ay^2$, $L_{18m} = 2bz^2$, ab = p. Theorem 1 implies $a \neq 1$. (7) implies $b \neq 1$.

Theorem 27: $F_n \neq 55px^2$.

Proof: Assume the contrary. Then (16) implies z(55) | n, so n = 10m. If $3 \nmid m$, then (15) and Lemma 16 imply $F_{5m} = 5ay^2$, $L_{5m} = bz^2$, ab = 11p. If a = 1, then Theorem 4 implies 5m = 5, so $L_5/11 = 1 = pz^2$, an impossibility. If a = 11, then Theorem 4 implies 5m = 10, so $L_{10} = 123 = pz^2$, an impossibility. (6) implies $b \neq 1$. If b = 11, then (11) implies 5m = 5, so $F_{5m}/5 = 1 = py^2$, an impossibility. If m = 3k, then (15) and Lemma 16 imply $F_{15k} = 10ay^2$, $L_{15k} = 2bz^2$, ab = 11p. Theorem 3 implies $a \neq 1$. Theorem 7 implies $a \neq 11$. (7) implies $b \neq 1$. Lemma 14 implies $b \neq 11$.

Theorem 28: $F_n = 65px^2$ iff $(n, p, x^2) = (35, 141961, 1)$.

Proof: $F_{35} = 65 * 141961 * 1^2$. If $F_n = 65px^2$, then (16) implies z(65) | n, so n = 35m, and $F_{7m}(F_{35m}/F_{7m}) = 65px^2$. Let $d = (F_{7m}, F_{35m}/F_{7m})$. Now Lemma 8 implies $13/F_{35m}/F_7$. If 5/m, then (39) implies d = 1, so $F_{7m} = 13ay^2$, $F_{35m}/F_{7m} = 5bz^2$, ab = p. If a = 1, then (4) implies 7m = 7, so $F_{35}/5F_7 = 141961 = pz^2$. Therefore p = 141961, n = 35, $x^2 = 1$. Lemma 11 implies $b \neq 1$. If m = 5k, then (39) implies d = 5. (34) implies $5^2/F_{175k}/F_{35k}$. Thus, $F_{35k} = 325ay^2$, $F_{175k}/F_{35k} = 5bz^2$, ab = p. But (4) implies $a \neq 1$. Lemma 11 implies $b \neq 1$.

Theorem 29: $F_n \neq 66px^2$.

Proof: Assume the contrary. Then (16) implies $z(66) \mid n$, so n = 60m. Now (43), (38), and Lemma 16 imply $F_{30m} = 44ay^2$, $L_{30m} = 2bz^2$, ab = 3p. (3) implies $a \neq 1$. Theorem 2 implies $a \neq 3$. (7) and (9) imply $b \neq 1$ and 3, respectively.

Theorem 30: $F_n \neq 70px^2$.

Proof: Assume the contrary. Then (16) implies $z(70) \mid n$, so n = 120m. (15), (38), and Lemma 16 imply $F_{60m} = 20ay^2$, $L_{60m} = 2bz^2$, ab = 7p. (4) implies $a \neq 1$. Theorem 22 implies $a \neq 7$. (7) implies $b \neq 1$. Lemma 15 implies $b \neq 7$.

314

We summarize the results of Theorems 1 through 30 in Table 1. For each listed value of k, we list all solutions of (*) with c = kp, if any. The cases k = 2, 23, 26, 34 are subject to the restriction that p < 10,000.

TABLE 1	L
---------	---

k (n, p, x^2)	k (1	n, p, x ²)	k	(n, p, x^2)	k	(n, p, x^2)	k	(n, p, x^2)
2 (9, 17, 1) 3 (8, 7, 1) 3 (12, 3, 16) 5 (10, 11, 1) 6 ********** 7 (8, 3, 1)	11 (13 (14 (15 *	15, 61, 1) 10, 5, 1) 14, 29, 1) 24, 23, 144) *************** 9, 2, 1)	21 22 23 26 29 30	<pre>(16, 47, 1) ************************************</pre>	31 33 34 35 38 39	**************************************	42 51 55 65 66 70	**************************************

Combining these new results with those of [1] and [9], we obtain Table 2, which lists all solutions of (*) such that $1 \le C \le 1000$.

TABLE 2

с	(n, x^2)	с	(n, x^2)	c .	(n, x ²)	. c	(n, x^2)		
	(1, 1) (2, 1) (12, 144) (3, 1)	5 8	(4, 1) (5, 1) (6, 1) (7, 1)	55 89		377 610	(24, 144) (14, 1) (15, 1) (18, 4)		
2	(6, 4)	21	(8, 1)	233	(13, 1)	987	(16, 1)		

Concluding Remarks

Notice that in every solution we have $x^2 = 1$, 4, or 144. This leads us to conjecture that in any solution of (*) one must have $x^2 = 1$, 4, or 144.

References

- 1. J. H. E. Cohn. "Square Fibonacci Numbers, etc." Fibonacci Quarterly 2.2 (1964):109-13.
- 2. M. Goldman. "Lucas Numbers of the Forms px^2 , Where p = 3, 7, 47, or 2207." Math. Rep. Acad. Sci. Canada 10.3 (1988):139-41.
- John H. Halton. "On the Divisibilities Properties of Fibonacci Numbers." Fibonacci Quarterly 4.3 (1966):217-40.
- 4. H. Harborth & A. Kemnitz (private communication).
- 5. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969.
- E. Lucas. "Theorie des fonctions numériques simplement periodiques." Amer. J. Math. 1 (1878):184-240; 289-321.
- 7. N. Robbins. "Fibonacci and Lucas Numbers of the Forms w^2 1, $w^3 \pm 1$." Fibonacci Quarterly 19 (1981):369-73.
- 8. N. Robbins. "Some Identities and Divisibility Properties of Linear Second-Order Recursion Sequences." *Fibonacci Quarterly* 20.1 (1982):21-24.
- 9. N. Robbins. "On Fibonacci Numbers of the Form px^2 , Where p is Prime." Fibonacci Quarterly 21.3 (1983):266-71.
- 10. N. Robbins. "Fibonacci Numbers of the Forms $px^2 \pm 1$, $px^3 \pm 1$, Where p is prime." In *Applications of Fibonacci Numbers*, pp. 77-88. Edited by A. N. Philippou, A. F. Horadam, and G. E. Bergum. The Netherlands: Kluwer, 1988.
- 11. N. Robbins. "Lucas Numbers of the Form px^2 , Where p is Prime." To appear in Internat. J. Math. & Math. Sci.

1990]

315