
GENERALIZED COMPLEX FIBONACCI AND LUCAS FUNCTIONS 

Richard Andre-Jeannin 
Ecole Nationale d'Ingenieurs de Sfax, Tunisia 

(Submitted December 1988) 

1. Introduction 

Eric Halsey [3] has invented a method for defining the Fibonacci numbers 
F(x), where x is a real number. Unfortunately, the Fibonacci identity 

(1) F(x) = F(x - 1) + F(x - 2) 

is destroyed. We shall return later to his method. 
Francis Parker [6] defines the Fibonacci function by 

ax - cos Trxa~x 
F(x) = — T > 

where a is the golden ratio. In the same way, we can define a Lucas function 

L{x) = ax + cos nxa~x. 

F(x) and L{x) coincide with the usual Fibonacci and Lucas numbers when x is 
an integer, and the relation (1) is verified. But the classical Fibonacci 
relations do not generalize. For instance, we do not have 

F(2x) = F{x)L{x). 

Horadam and Shannon [4] define Fibonacci and Lucas curves. They can be 
written, with complex notation 

ax - e^x a~x 

(2) F(x) = , 

(3) L(x) = ax + eUxa~x. 

Again, we have F(n) = Fn, L{n) = Ln, for all integers n. 
We shall prove in the sequel that the well-known identities for Fn and Ln 

are again true for all real numbers x, if F{x) and L(x) are defined by (2) and 
(3). For example, we have immediately 

F(2x) = F(x)L(x). 

We shall also relate these F(x) and L(x) to other Fibonacci properties as well 
as to HalseyTs extension of the Fibonacci numbers. 

2. Preliminary Lemma 

Let us consider the set E of functions w : E. -> (C such that 

(4) \/x e E., w(x) = w(x - 1) + w(x - 2). 

E is a complex vector space, and the following lemma is immediate. 

Lemma 1: Let a be the positive root of r2= r + 1. Then the functions / and g, 
defined by 

fix) = ax, g(x) = eUxa~x 

are members of E. 
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Let us define now a subspace 7 of E by 
V = {w : E. -> C, W = Xf + ]ig9 A, y € C}. 

The functions F and L, defined by (2) and (3), are members of 7. 

Lemma 2: For all complex numbers a and b, there is a unique function w in 7 
such that 

w(0) = a, W(l) = b. 

Proof: We have 

w(0) = X + u = a, w(l) = \a - yoT1 = b. 

By Cramer's rule, X and u exist and are unique, 

Lemma 3: Let w be a member of 7, and /z a real number. Then the functions w^ 
and Wfr, defined by 

wh(x) = w(x - h) , w^x) = e^xw(h - x), 

are members of 7. 

Proof: The proof is simple and therefore is omitted here. 

Lemma 4: Let w and v be two elements of 7 and 6 : K2 -> (C, the function defined 
by 

6(x, y) 
u(x), u(x + 1) 

u(x)v(y + 1) - u(x + l)y(z/). 

Then we have 

(5) 6(a, 2/) = euy&{x - y, 0). 

Proof: First, we have 

\u(x), u(x) + u(x - 1) 
(6) 6(x, y) 

v(y), v(y) + v(y - 1) 

-S(x - 1, z/ - 1). 

u(# - i) 

v(y - 1) 

Now, let us define 

T)(x, y)' = eiiry6(x - z/, 0) = £i7r^(wO - z/)i;(l)' - w(tf - y + l)v(0)). 

Let x be a fixed real number. By Lemma 3, the functions 

y -> 6 0 , 2/), z/ + r)(x, y) 

are members of 7. We have 

6 0 , 0) = r\(x, 0) , 

and, by (6), 

5(x9 1) = -6(x - ' l , 0) = n(tf» 1 ) . 
By Lemma 2 we have , for a l l r e a l numbers y9 

S(x, y) = r\(x> y). 
This concludes the proof. 

Lemma 5: Let F and L be the Fibonacci and Lucas functions defined by (2) and 
(3). Then, for all real numbers, we have: 

(7) L(x) = F(x + 1) + F(x - 1); 
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(8) 5F(x) = 2L(x + 1) - L{x)i 

(9) L(x) = 2F(x + 1) - F{x). 

The proofs readily follow from the lemmas and the definitions of the functions. 

3. The Main Result 

Theorem 1: Let u and v be two functions of V. Then, for all values of x9 y, 
and z 5 we have 

(10) u(x)v(y + z) - u(x+ z)viy) = eUyF{z){u(x- y)v(l) - u(x-y +l)v{0)], 

where F is defined by (2). 

Proof: For x and y fixed, consider the function A: 

A(s) = u(x)v(y + z) - u(x + z)v(y). 

By Lemma 3, A is a member of F, and we have, with the notation of Lemma 4S 

A(0) = 0, A(l) = 6(x, y). 

Thus, we have, since the two members take the same values at z = 0, z = 1: 

AGs) = 6 (*, y)F(z). 

The proof follows by Lemma 4. 

4. Special Cases 

Let us examine some particular cases of (10): 

Case 1. u = v = F 

Since F(0) = 0, F(l) = 1, we have 

(11) F(x)F(y + s) - F(tf + s)F(z/) = euVF(z)F(x - y). 

Case 2. u = V = L 

Since L(0) = 2, L(l) = 1, we have, by (8), 

(12) L(x)L(y + s) - £(# + s)L(zy) = -5gilT^(<0F(x - z/) . 

Case 3. u = F9 v = L 

We have, by (9), 

(13) F(x)L(y + z) - F(x + z)L(y) = -ei7r^F(s)L(x - z/) . 

Case 4. u = L, v = F 

(14) L(x)F(y + z) - L(x + s)F(z/) = e^F(s)L(x - y) . 

Case 5. Let y = 0 in (12) and (13) to get 

(15) 2L(x + s) = L(a?)L(a) + 5F(^)F(s) , 

(16) 2F(x + z) = F(a;)L(3) + F(js)L(a;). 

Case 6. Let zy = 1 in (11)-(14) to get 

(17) F{x + z) = F(x)F(z + 1) + F(z)F(x - 1), 

(18) L(x + s) = L(ff)L(3 + 1) - 5F(s)F(x - 1), 

(19) F(x + z) = Fix)Liz + 1) - Fiz)Lix - 1), 

(20) Lix + z) = L(x)F(z + 1) + F(s)L(x - 1). 
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Case 7. Let y = x - z i n (11)—(14) to get 

(21) {Fix))1 - F{x + z)F{x - z) = eiHx-z){F{z))2, 

(22) {L{x))z - L{x + z)L{x - z) = -5eU(<x~ z){F{z) ) 2 , 

(23) F{x)L{x) - F{x + z)L{x - z) = -el^x ~^F{z)L{z), 

(24) F{x)L{x) - F{x - z)L{x + z) = e™(x'z)F(z)L(z) . 

Remark: (21) and (22) a r e C a t a l a n ! s r e l a t i o n s fo r F{x), L{x). 

5. Appl ica t ion : A Reciproca l Se r ies of Fibonacci Number s 

Theorem 2: Let x be a s t r i c t l y p o s i t i v e r e a l number and F the F ibonacc i func-
t i o n . Then we have 

fc-l FGr • 2*) F(x)ax 

Proof: We recall the relation attributed to De Morgan by Bromwich and to Cata-
lan by Lucas, 

* a2""1 1 a - g2* 
(25) 2^ , ofc , , 9« » k= l 1 - sz 1 - 2 1 - zz 

where z is a complex number (\z\ * 1). Now put z = ezlJX a~2x in (25) to obtain: 

eU2-k~lxa~lkx n eUlk~Yx 1 n ei^2k^x 

( 2 6 > /5l 1 - g^^cT2**1* =*?ia2** - ^ 2 ^ a " 2 ^ = / 5 A ? i F(2*tf) 

On the o t h e r hand, the r i g h t member of (25) becomes 

, N 1 eUxa~lx - eU2^a~2n + lx 1 eiltxF((2n - l)x) 
(27) • == • . 

1 - eUxa~2x 1 - ei*2nxa-2n + 1x /5F(x) F(x • 2n) 
(26) and (27) g ive us 

n ei-n2k~1x eUxF((2n - \)X) 
(28) / . ^ = , 

fc-i F(2fea;) F ( 2 n - x)i^(x) 
and so 
(29) E "^-T = • 

k=i F(2kx) F(x)ax 

Remark: Put x = m i n ( 2 9 ) , where m i s a n a t u r a l i n t e g e r . Af te r some c a l c u l a -
t i o n s i n the case m odd, we o b t a i n the well-known formula: 

C } h i F{2km) " a 2 - - T 
Formula (30) was found by Lucas (see [5], p. 225) and was rediscovered by Brady 
[1]. See also Gould [2] for complete references. 

6. Halsey f s Fibonacci F u n c t i o n 

First, we recall a well-known formula, 
m{ri) 

F = 

where m(n) is an integer such that (n/2) - 1 < m(n) < (ft/2). 

& ( " " i ' )•"'-'• 
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We have used the binomial coefficients (£) only when n is a positive inte-
ger but it is very convenient to extend their definitions. Then 

ix\ . lx\ oo(x - 1) . . . ( # - fc + 1) 
( 0 ) = i , (k) = , k > u 

defines the binomial coefficients for all values of x, 
From this, we can introduce the function G, 

(31) G(x) = Z { l ' , x > 0, 

where m(x) is the integer defined by (x/2) - 1 < m(x) < (x/2). Then, clearly, 
we have 

G(n) = Fn, n > 1. 

Theorem 3: G coincides with Halsey?s extension of Fibonacci numbers, namely, 

G(x) = E [^ ~ ̂ )S(x ~ 2/c, /c + l)]"1, x > 0, 
fc = 0 

where B(x, y) is the beta-function: 

£(x, y) = f tx~l(l - t)y~ldt, x > 0, y > 0. 
Jo 

Proof: It is sufficient to show that 

(32) I = (* - k ~ l) 
K (x - k)B(x - 2k, k + l) V k r 
In fact, the left member of (32) is 

r(x - k + 1) _ (x - k)(x - k - 1) ... (x - 2k)T(x - 2k) 
(x - k)T(x - 2k)T(k + 1) (x - fc)r(tf - 2fc)k! 

(x - k - 1) ... (x - 2k) Ix - k - l\ -rr1)-
in which we have used the well-known properties of the gamma-function: 

T(x) = (x - l)T(x - 1), Y(k) = (k - 1)1 

This concludes the proof. 

Let p be a positive integer, and let Gp be the polynomial defined by 
P 

G __ 
k= 0 ^ - . ^ ( " • J - 1 

We see, from (31), that 

(33) G(x) = Gp(x), 2p < x < 2-p + 2; 
thus, 

£p(2p + 1) = £(2p + 1) = F2p+l, 

£p(2p + 2) = £(2p + 2) = F2p + 2. 

In fact, we have a deeper result, which we state as the following theorem. 

Theorem 4: Gp(n) = Fn for n = p + 1, p + 2, ..., 2p + 2. 

Proof: We shall prove this by mathematical induction. If p = 0, we have 

G0(D = GQ(2) = 1. 
Now we suppose that Gp-i(n) = Fn (n = p, ..., 2p). Then we have 
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Gp(x) = Gp.l(x) + [ £ j = (?p-iW + j —, 

and thus, 

Gp(ra) = Gp-i(n) = Fn, for n = p + 1, ..., 2p; 
but we have seen above that 

Gp(2p + 1) = F2p + 1, £p(2p + 2) = F2p + 2. 

This concludes the proof. 

Corollary: G is continuous for all values of x > 0. 

Proof: By (33), it is sufficient to show the continuity from the right at x = 
2p. But 

lim G{x) = Gv(2p) = Flv (by Theorem 4) 
x •> 2p ^ 

* >2P = £(2p). 
Finally, we see that Halsey^ function is a continuous piecewise polyno-

mial. For instance, 

G(x) = 1 , 0 < x < 2, 

G(a0 = i c - l , 2 < ̂  < 4, 

^/ A x2 - 5x + 10 . ̂  ,̂ . £(x) = , 4 < x < 6. 
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