GENERALIZED COMPLEX FIBONACCI AND LUCAS FUNCTIONS

Richard André-Jeannin

Ecole Nationale d'Ingenieurs de Sfax, Tunisia
(Submitted December 1988)

1. Introduction

Eric Halsey [3] has invented a method for defining the Fibonacci numbers $F(x)$, where x is a real number. Unfortunately, the Fibonacci identity
(1) $\quad F(x)=F(x-1)+F(x-2)$
is destroyed. We shall return later to his method.
Francis Parker [6] defines the Fibonacci function by

$$
F(x)=\frac{\alpha^{x}-\cos \pi x \alpha^{-x}}{\sqrt{5}},
$$

where α is the golden ratio. In the same way, we can define a Lucas function

$$
L(x)=\alpha^{x}+\cos \pi x \alpha^{-x} .
$$

$F(x)$ and $L(x)$ coincide with the usual Fibonacci and Lucas numbers when x is an integer, and the relation (1) is verified. But the classical Fibonacci relations do not generalize. For instance, we do not have

$$
F(2 x)=F(x) L(x) .
$$

Horadam and Shannon [4] define Fibonacci and Lucas curves. They can be written, with complex notation
(2) $\quad F(x)=\frac{\alpha^{x}-e^{i \pi x} \alpha^{-x}}{\sqrt{5}}$,
(3) $\quad L(x)=\alpha^{x}+e^{i \pi x} \alpha^{-x}$.

Again, we have $F(n)=F_{n}, L(n)=L_{n}$, for all integers n.
We shall prove in the sequel that the well-known identities for F_{n} and L_{n} are again true for all real numbers x, if $F(x)$ and $L(x)$ are defined by (2) and (3). For example, we have immediately

$$
F(2 x)=F(x) L(x) .
$$

We shall also relate these $F(x)$ and $L(x)$ to other Fibonacci properties as well as to Halsey's extension of the Fibonacci numbers.

2. Preliminary Lemma

Let us consider the set E of functions $w: \mathbb{R} \rightarrow \mathbb{C}$ such that
(4) $\quad \forall x \in \mathbb{R}, \omega(x)=\omega(x-1)+w(x-2)$.
E is a complex vector space, and the following lemma is immediate.
Lemma 1: Let α be the positive root of $r^{2}=r+1$. Then the functions f and g, defined by

$$
f(x)=\alpha^{x}, \quad g(x)=e^{i \pi x} \alpha^{-x}
$$

are members of E.

$$
\begin{aligned}
& \text { Let us define now a subspace } V \text { of } E \text { by } \\
& \qquad V=\{w: \mathbb{R} \rightarrow \mathbb{C}, w=\lambda f+\mu g, \lambda, \mu \in \mathbb{C}\}
\end{aligned}
$$

The functions F and L, defined by (2) and (3), are members of V.
Lemma 2: For all complex numbers α and b, there is a unique function w in V such that

$$
w(0)=a, \quad w(1)=b
$$

Proof: We have

$$
w(0)=\lambda+\mu=\alpha, \quad w(1)=\lambda \alpha-\mu \alpha^{-1}=b .
$$

By Cramer's rule, λ and μ exist and are unique.
Lemma 3: Let w be a member of V, and h a real number. Then the functions w_{h} and w_{h}^{\prime}, defined by

$$
w_{h}(x)=w(x-h), \quad w_{h}^{\prime}(x)=e^{i \pi x} w(h-x),
$$

are members of V.
Proof: The proof is simple and therefore is omitted here.
Lemma 4: Let u and v be two elements of V and $\delta: \mathbb{R}^{2} \rightarrow \mathbb{C}$, the function defined by

$$
\delta(x, y)=\left|\begin{array}{ll}
u(x), & u(x+1) \\
v(y), & v(y+1)
\end{array}\right|=u(x) v(y+1)-u(x+1) v(y)
$$

Then we have

$$
\begin{equation*}
\delta(x, y)=e^{i \pi y} \delta(x-y, 0) \tag{5}
\end{equation*}
$$

Proof: First, we have

$$
\begin{align*}
\delta(x, y) & =\left|\begin{array}{ll}
u(x), & u(x)+u(x-1) \\
v(y), & v(y)+v(y-1)
\end{array}\right|=\left|\begin{array}{ll}
u(x), & u(x-1) \\
v(y), & v(y-1)
\end{array}\right| \tag{6}\\
& =-\delta(x-1, y-1)
\end{align*}
$$

Now, let us define

$$
\eta(x, y)=e^{i \pi y} \delta(x-y, 0)=e^{i \pi y}(u(x-y) v(1)-u(x-y+1) v(0))
$$

Let x be a fixed real number. By Lemma 3, the functions

$$
y \rightarrow \delta(x, y), \quad y \rightarrow \eta(x, y)
$$

are members of V. We have

$$
\delta(x, 0)=\eta(x, 0),
$$

and, by (6),

$$
\delta(x, 1)=-\delta(x-1,0)=\eta(x, 1)
$$

By Lemma 2 we have, for all real numbers y,

$$
\delta(x, y)=\eta(x, y)
$$

This concludes the proof.
Lemma 5: Let F and L be the Fibonacci and Lucas functions defined by (2) and (3). Then, for all real numbers, we have:

$$
\begin{equation*}
L(x)=F(x+1)+F(x-1) \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& 5 F(x)=2 L(x+1)-L(x) \tag{8}\\
& L(x)=2 F(x+1)-F(x)
\end{align*}
$$

The proofs readily follow from the lemmas and the definitions of the functions.

3. The Main Result

Theorem 1: Let u and v be two functions of v. Then, for all values of x, y, and z, we have
(10) $u(x) v(y+z)-u(x+z) v(y)=e^{i \pi y} F(z)[u(x-y) v(1)-u(x-y+1) v(0)]$,
where F is defined by (2).
Proof: For x and y fixed, consider the function Δ :

$$
\Delta(z)=u(x) v(y+z)-u(x+z) v(y)
$$

By Lemma 3, Δ is a member of V, and we have, with the notation of Lemma 4,

$$
\Delta(0)=0, \quad \Delta(1)=\delta(x, y)
$$

Thus, we have, since the two members take the same values at $z=0, z=1$:

$$
\Delta(z)=\delta(x, y) F(z)
$$

The proof follows by Lemma 4.

4. Special Cases

Let us examine some particular cases of (10):
Case 1. $u=v=F$
Since $F(0)=0, F(1)=1$, we have

$$
\begin{equation*}
F(x) F(y+z)-F(x+z) F(y)=e^{i \pi y} F(z) F(x-y) . \tag{11}
\end{equation*}
$$

Case 2. $u=v=L$
Since $L(0)=2, L(1)=1$, we have, by (8),
(12) $\quad L(x) L(y+z)-L(x+z) L(y)=-5 e^{i \pi y} F(z) F(x-y)$.

Case 3. $u=F, v=L$
We have, by (9),

Case 4. $u=L, v=F$
(14) $\quad L(x) F(y+z)-L(x+z) F(y)=e^{i \pi y} F(z) L(x-y)$.

Case 5. Let $y=0$ in (12) and (13) to get
(15) $2 L(x+z)=L(x) L(z)+5 F(x) F(z)$,
(16) $\quad 2 F(x+z)=F(x) L(z)+F(z) L(x)$.

Case 6. Let $y=1$ in (11)-(14) to get
(17) $\quad F(x+z)=F(x) F(z+1)+F(z) F(x-1)$,
(18) $\quad L(x+z)=L(x) L(z+1)-5 F(z) F(x-1)$,
(19) $\quad F(x+z)=F(x) L(z+1)-F(z) L(x-1)$,

$$
\begin{equation*}
L(x+z)=L(x) F(z+1)+F(z) L(x-1) \tag{20}
\end{equation*}
$$

Case 7. Let $y=x-z$ in (11)-(14) to get

$$
\begin{align*}
& (F(x))^{2}-F(x+z) F(x-z)=e^{i \pi(x-z)}(F(z))^{2}, \tag{21}\\
& (L(x))^{2}-L(x+z) L(x-z)=-5 e^{i \pi(x-z)}(F(z))^{2}, \\
& F(x) L(x)-F(x+z) L(x-z)=-e^{i \pi(x-z)} F(z) L(z), \\
& F(x) L(x)-F(x-z) L(x+z)=e^{i \pi(x-z)} F(z) L(z) .
\end{align*}
$$

Remark: (21) and (22) are Catalan's relations for $F(x), L(x)$.

5. Application: A Reciprocal Series of Fibonacci Numbers

Theorem 2: Let x be a strictly positive real number and F the Fibonacci function. Then we have

$$
\sum_{k=1}^{\infty} \frac{e^{i \pi 2^{k-1} x}}{F\left(x \cdot 2^{k}\right)}=\frac{e^{i \pi x}}{F(x) \alpha^{x}}
$$

Proof: We recall the relation attributed to De Morgan by Bromwich and to Catalan by Lucas,

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{z^{2^{k-1}}}{1-z^{2^{k}}}=\frac{1}{1-z} \frac{z-z^{2^{n}}}{1-z^{2^{n}}} \tag{25}
\end{equation*}
$$

where z is a complex number $(|z| \neq 1)$. Now put $z=e^{i \pi x} \alpha^{-2 x}$ in (25) to obtain:

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{e^{i \pi 2^{k-1} x} \alpha^{-2^{k} x}}{1-e^{i \pi 2^{k} x} \alpha^{-2^{k+1} x}}=\sum_{k=1}^{n} \frac{e^{i \pi 2^{k-1} x}}{\alpha^{2^{k} x}-e^{i \pi 2^{k} x} \alpha^{-2^{k} x}}=\frac{1}{\sqrt{5}} \sum_{k=1}^{n} \frac{e^{i \pi 2^{k-1} x}}{F\left(2^{k} x\right)} \tag{26}
\end{equation*}
$$

On the other hand, the right member of (25) becomes
(26) and (27) give us
and so

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{e^{i \pi 2^{k-1} x}}{F\left(2^{k} x\right)}=\frac{e^{i \pi x} F\left(\left(2^{n}-1\right) x\right)}{F\left(2^{n} \cdot x\right) F(x)}, \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{e^{i \pi 2^{k-1} x}}{F\left(2^{k} x\right)}=\frac{e^{i \pi x}}{F(x) \alpha^{x}} \tag{29}
\end{equation*}
$$

Remark: Put $x=m$ in (29), where m is a natural integer. After some calculations in the case m odd, we obtain the well-known formula:

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{F\left(2^{k} m\right)}=\frac{\sqrt{5}}{\alpha^{2 m}-1} \tag{30}
\end{equation*}
$$

Formula (30) was found by Lucas (see [5], p. 225) and was rediscovered by Brady
[1]. See also Gould [2] for complete references.

6. Halsey's Fibonacci Function

First, we recall a well-known formula,

$$
F_{n}=\sum_{k=0}^{m(n)}\binom{n-k-1}{k}, n \geq 1
$$

where $m(n)$ is an integer such that $(n / 2)-1 \leq m(n)<(n / 2)$.

We have used the binomial coefficients $\binom{n}{k}$ only when n is a positive integer but it is very convenient to extend their definitions. Then

$$
\binom{x}{0}=1, \quad\binom{x}{k}=\frac{x(x-1) \ldots(x-k+1)}{k!}, k \geq 1,
$$

defines the binomial coefficients for all values of x.
From this, we can introduce the function G,

$$
\begin{equation*}
G(x)=\sum_{k=0}^{m(x)}(x-k-1), x>0 \tag{31}
\end{equation*}
$$

where $m(x)$ is the integer defined by $(x / 2)-1 \leq m(x)<(x / 2)$. Then, clearly, we have

$$
G(n)=F_{n}, n \geq 1
$$

Theorem 3: G coincides with Halsey's extension of Fibonacci numbers, namely,

$$
G(x)=\sum_{k=0}^{m(x)}[(x-k) B(x-2 k, k+1)]^{-1}, x>0,
$$

where $B(x, y)$ is the beta-function:

$$
B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t, \quad x>0, y>0
$$

Proof: It is sufficient to show that

$$
\begin{equation*}
\frac{1}{(x-k) B(x-2 k, k+1)}=(x-k-1) \tag{32}
\end{equation*}
$$

In fact, the left member of (32) is

$$
\begin{aligned}
\frac{\Gamma(x-k+1)}{(x-k) \Gamma(x-2 k) \Gamma(k+1)} & =\frac{(x-k)(x-k-1) \ldots(x-2 k) \Gamma(x-2 k)}{(x-k) \Gamma(x-2 k) k!} \\
& =\frac{(x-k-1) \ldots(x-2 k)}{k!}=(x-k-1),
\end{aligned}
$$

in which we have used the well-known properties of the gamma-function:

$$
\Gamma(x)=(x-1) \Gamma(x-1), \quad \Gamma(k)=(k-1)!
$$

This concludes the proof.
Let p be a positive integer, and let G_{p} be the polynomial defined by

$$
G_{p}(x)=\sum_{k=0}^{p}\binom{x-k-1}{k}
$$

We see, from (31), that

$$
\begin{equation*}
G(x)=G_{p}(x), \quad 2 p<x \leq 2 p+2 \tag{33}
\end{equation*}
$$

thus,
$G_{p}(2 p+1)=G(2 p+1)=F_{2 p+1}$,
$G_{p}(2 p+2)=G(2 p+2)=F_{2 p+2}$ 。
In fact, we have a deeper result, which we state as the following theorem.
Theorem 4: $G_{p}(n)=F_{n}$ for $n=p+1, p+2, \ldots, 2 p+2$.
Proof: We shall prove this by mathematical induction. If $p=0$, we have

$$
G_{0}(1)=G_{0}(2)=1
$$

Now we suppose that $G_{p-1}(n)=F_{n}(n=p, \ldots, 2 p)$. Then we have

$$
G_{p}(x)=G_{p-1}(x)+\binom{x-p-1}{p}=G_{p-1}(x)+\frac{(x-p-1) \ldots(x-2 p)}{p!},
$$

and thus,

$$
G_{p}(n)=G_{p-1}(n)=F_{n}, \text { for } n=p+1, \ldots, 2 p ;
$$

but we have seen above that

$$
G_{p}(2 p+1)=F_{2 p+1}, \quad G_{p}(2 p+2)=F_{2 p+2}
$$

This concludes the proof.
Corollary: G is continuous for all values of $x>0$.
Proof: By (33), it is sufficient to show the continuity from the right at $x=$ $2 p$. But

$$
\begin{aligned}
\lim _{\substack{x \rightarrow 2 p \\
x>2 p}} G(x)=G_{p}(2 p) & =F_{2 p} \quad(\text { by Theorem 4) } \\
& =G(2 p) .
\end{aligned}
$$

Finally, we see that Halsey's function is a continuous piecewise polynomial. For instance,

$$
\begin{array}{ll}
G(x)=1, & 0<x \leq 2, \\
G(x)=x-1, & 2<x \leq 4, \\
G(x)=\frac{x^{2}-5 x+10}{2}, & 4<x \leq 6 .
\end{array}
$$

References

1. W. G. Brady. "Addition to the Summation of Reciprocal Fibonacci and Lucas Series." Fibonacci Quarterly 9.4 (1971):402-04.
2. H. W. Gould. "A Rearrangement of Series Based on a Partition of the Natural numbers." Fibonacci Quarterly 15.1 (1977):66-77.
3. E. Halsey. "The Fibonacci Number F_{u} Where u Is Not an Integer." Fibonacci Quarterly 3.2 (1965):147-52.
4. A. F. Horadam \& A. G. Shannon. "Fibonacci and Lucas Curves." Fibonacei Quarterly 26.1 (1988):3-13.
5. E. Lucas. "Theorie des fonctions numériques simplement périodiques." Amer. J. Math 1 (1878):184-240.
6. F. D. Parker. "A Fibonacci Function." Fibonacci Quarterly 6.1 (1968):1-2.
