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One of the problems of classical number theory is the determination of all 
primitive integral right triangles. The well-known answer is that if r > s are 
relatively prime positive integers, not both odd, then the triangle with 
sides v2 - s2, 2rs, and v2 + s2 is such a triangle (easy to check) and any such 
triangle is of this form for some v and s. A simple proof of the latter half 
is given in [1]. This paper deals with a similar question that has a similar 
answer but a somewhat longer solution. The main tool in that solution is a 
thinly disguised version of the Chebyshev polynomials of the second kind. 

Definition 1: Let j > k be positive, relatively prime integers. A triangle will 
be called an <j, k> triangle if one of its angles is j/k times another. 

It is easy to write down the primitive integral <1, 1> (i.e., isosceles) 
triangles. These triangles have sides s, ss and r, where v and s are positive 
integers, (i>, s) = 1, and v < 2s. The primitive integral <2, 1> triangles have 
been determined by Luthar in [2]. If v and s are positive integers where 
(r, s) = 1 and s < v < 2s, then the triangle with sides PS, s2, and v2 - s2 is 
a primitive integral <2, 1> triangle, and all such triangles are of this form 
for suitable v and s. In this paper we shall determine all primitive integral 
<j, k> triangles for all j and k satisfying the criterion of Definition 1. 
Although this is hardly one of the burning mathematical questions of our time, 
it is hoped that the solution presented here will be of some interest, since it 
both draws ideas from several areas of mathematics and requires little back-
ground to understand. 

First, let us fix j and k. It is clear that the <j, k> triangles are char-
acterized by having angles ja, /ca, and i\ - (j + k)a for some positive real num-
ber a such that (j + k)a < IT. Also, for any such a, there may or may not be a 
rational sided (hence, a primitive integral) triangle in the similarity class 
of <j, k> triangles associated with a in this way. The law of sines immedi-
ately gives us a triangle in that similarity class. If the triangle with sides 
a, b, c is denoted by the triple <a, b, c>, then <sin ja, sin ka9 sin(j + k)a> 
is in it. The following lemma leads us to a condition on a sufficient to 
ensure that there is a rational sided triangle similar to <sin ja, sin ka9 
sin(j + k)a>. 

Lemma 1: Define a sequence {pn(x)}n>o of polynomials with integer coefficients 
as follows: p00c) = 0, p^(x) = 1S and, for n > 2, 

pn(x) = xpn_l(x) - pn_20c). 
Then, for any real number a which is not an integral multiple of TT, we have 

pn (2 cos a) = (sin na)/(sin a). 

Proof: The formula for the sine of a sum yields the following identities for 
n > 2: 

sin not = sin(n - l)a cos a + cos(n - l)a sin a 

sin(n - 2)a = sin(n - l)a cos a - cos(n - l)a sin a 

Adding these identities and dividing by sin a, we get: 

(sin na)/(sin a) = (2 cos a) • (sin(n - l)a)/(sin a) 
- (sin(n - 2)a)/(sin a) 

1991] 3 



THE DETERMINATION OF A CLASS OF PRIMITIVE INTEGRAL TRIANGLES 

Thus, for any a which i s not an in teg ra l multiple of ir, the sequences 
{(sin na)/(sin a)}n>0 and {pn(2 cos a)}n>0 

satisfy the same second-order linear recurrence relation. Furthermore, these 
sequences coincide on their first two terms. It follows that they are 
identical for all n. 

Proposition 1: If 0 < a < TT/(J + k ) and cos a is a rational number, then there 
is a rational sided triangle with angles ja, ka9 and ir - (j + k)a. 

Proof: By Lemma 1, <p.(2 cos a), pk(2 cos a), p.+,(2 cos a)> has the correct 
angles. Its sides are rational because cos a is. 

Remark 1: It is clear from the definition of {p„} that, for all n > 1, pn(x) is 
monic of degree n - 1. These polynomials, after a shift of subscripts and a 
change of variables, are none other than the Chebyshev polynomials of the 
second kind, {Un(x)}n>0. For n > 0, Un(x) = pn+i(2x) . In fact, Lemma 1 is 
equivalent to a well-known property of Un. It is proved again here to keep the 
discussion self-contained. The Chebyshev polynomials of the first kind, 
{Tn(x)}n>0, also deserve mention because they are used in the proof of the 
following lemma, which will lead us to the converse of Proposition 1. They can 
be defined by 

T0(x) El, Tl(x) = x, Tn{x) = 2xTn_l(x) - Tn„2(x), for n > 2. 
Reasoning as in the proof of Lemma 1, one can show that, for any real number a, 
Tn(cos a) = cos na. 

Lemma 2: Let a, T be real numbers; then, for any integers m and n, cosCwa+ni) 
is in the Z[cos a, cos T] module generated by 1 and cos(a + x) . 

Proof: Suppose that m9 n > 0. Then 

cos(±0?za ± nx)) = cos mo cos nx + sin mo sin nx 

= Tm(cos o)Tn(cos x) 
+ sin o p (2 cos a)sin x p (2 cos x). 

This follows from Lemma 1 and Remark 1 and is also true if o or x is an inte-
gral multiple of IT. Using the formula for the cosine of a sum again, we deduce 

cos(±(mo ± TIT)) = Tm(cos o)Tn(cos x) 
± p (2 cos o)p (2 cos x)(cos(a + x) - cos a cos x). 

Proposition 2: Suppose that for positive relatively prime integers j > k with 
0 < a < TT/(J+A:) there is a rational sided triangle with angles ja, ka9 and 
TT - (j + k)a. Then cos a is a rational number. 

Proof: If such a rational <j, k> triangle exists, then the law of cosines tells 
us that cos ja, cos fea, and cos(j + k) a = -cos(IT - (j 4- k) a) are all rational. 
Since j and fc are relatively prime, there are integers m and n such that mj + nk 
= 1. Applying Lemma 2 for a = ja and x = ka, and using this m and n9 we deduce 
that cos a is rational, as claimed. 

We now have necessary and sufficient conditions on a that there be a 
rational sided triangle with angles ja, ka9 and TT - (j + k) a. When there is 
such a triangle, we need to find the primitive integral triangle in its simi-
larity class. Properties of the sequence {pn(x)} and of a related sequence of 
homogeneous polynomials are the tools that will allow us to make that deter-
mination. 

Proposition 3: The following are true for the sequence {p (x)} defined in the 
statement of Lemma 1: 
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[(n- l)/2] 1 _ . 

(a) p (x) = £ (-DM* . ^ ) ^ n - 1 - 2 ^ for n > 0; 

w- 1 
(b) p (x) = H (x - 2 cos (tn/n)), for n > 1; 

n t= l 

(c) If j|n, then p (x) |p (x) as polynomials in Z[x]. 

Proof: (a) A straightforward (if somewhat tedious) computation using a standard 
addition formula for binomial coefficients demonstrates that the sequence of 
candidate polynomials shown above satisfies the defining recurrence relation 
for the pn . It is immediate that the two sequences coincide for n = 0, 1, so 
they must be the same for all n. Like Proposition 1, this is equivalent to a 
well-known statement about the Un. 

(b) Lemma 1 implies that 2 cos(tu/n) is a root of p for t = 1, 2, . .., 
n - 1 and, since the cosine is strictly decreasing on [0, TT] , these roots are 
distinct. Since p has degree n - 1, the proposed equation is true up to mul-
tiplication by a constant. But, both p and the product above are monic, so 
the constant is 1. 

(c) Part (b) implies this divisibility property as polynomials over the 
real numbers. If pn(x) = p,(x)q(x)5 where q(x) has real coefficients, the fact 
that pd is integer monic and pn is integral implies that q is integral. In 
fact, extending this reasoning, one can prove a stronger statement: if m and n 
axe nonnegative integers, then p. Ax) is the greatest common divisor of pm(x) 
and pn{x) in Z[x]. 

Remark 2: The field extension Q(e2^^)/Q for q an odd prime is often used as 
an example in the teaching of Galois theory and algebraic number theory. It is 
shown that this extension is Galois of degree q - 1 with cyclic Galois group 
and that the irreducible polynomial of e2-71^^ over Q is 

Qq(x) = x?-1 + ... + 1. 

It is also shown that the unique subextension of index 2, which is the subfield 
fixed by complex conjugation, is generated by 

2 COS(2TT/<7) = e^^/q + e-2ui/q 5 

an algebraic integer. Using Proposition 3(b), an identity satisfied by the 
{pn} that is easily proved, and some basic Galois theory, it can be shown that 
the irreducible polynomial of 2 COS(2TT/^) over Q is 

Proposition 3(a) then yields an explicit expression. 

It is convenient to introduce a new sequence {Pn(x, y)}n>i of homogeneous 
polynomials associated to {p (x)}. For n > 1, let 

[(n-l)/2] . 

i = 0 

where the latter equation above follows from Proposition 3(a). Using Proposi-
tion 3(c), we immediately see that d\n implies P^\Pn as polynomials in Z[x, y]. 
We require a final lemma before stating and proving the main result of this 
paper. 

Lemma 3: Let r and s be positive integers with (r, s) - 1 and let n > 1. Then 

(a) (s, Pn(p, s)) = 1; 

(b) (Pn(p, s), Pn+i(r, s)) = 1. 
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Proof: (a) First, we observe that Pn(r, s) E rn~l (mod s). This follows either 
from the explicit expression for Pn given above or directly from the definition 
of Pn and the fact, noted in Remark 1, that pn is integral monic of degree 
n - 1. Since (p, s) = 1 , it follows that (s, Pn(r, s)) = 1 for n > 1. 

(b) We prove this part by induction. Since Pi(r9 S) = 1, the statement 
is true for n = 1. Let n > 2 and assume that the statement is true for n - 1. 
By the definition of the sequence {Pn(x, y)}s the defining recursion formula 
for {p (x)} translates to 

Pn + l(r, s) = rPn(r, s) - s2Pn-i(r, s) . 

Assume d is a positive integer such that d\Pn(r9 s) and J|Pw+1(p, s) . Then, by 
part (a), (d, s) = 1; by the equation above, d\s2Pn-i(r, s); thus d\Pn-i(r9 s). 
Therefore, by the induction assumption, J = 1. 

Theorem 1: Let j > k be positive integers with (j, k) = 1, and let r and s be 
positive integers with (r, s) = 1 and COS(TT/(J + /c)) < P/2S < 1. Then 

<skPj(r, s), sJP^.(p, s), Pj + k(r, s)> 

is a primitive integral <.7, ̂c> triangle with angles ja, ĉa, and TT - (j + /c), 
for a = arccos (r/2s), and all primitive integral <j, fc> triangles are of this 
form for some such r and s. 

Proof: By the proof of Proposition 1, for each p and s satisfying the condi-
tions of the theorem, <p-(p/s), p, (p/s), p- + fc(p/s)> is a rational sided <j, £:> 
triangle with the required angles. By Proposition 2, any similarity class of 
<j, k> triangles that includes a triangle with rational sides includes a 
triangle of this form for some p and s satisfying the hypotheses of the 
theorem. Our proposed triangle is clearly integer sided, and the definition of 
the Pn implies that it is similar to this one by a scale factor of sJ + fc-1. 
Therefore, we need only prove that it is primitive. By Lemma 3(a), it suffices 
to show that, if u and v are positive integers with (u, v) - 1, then (Pu(r9 s), 
Pv (r, s)) = 1. If (u, v) - 1, there are positive integers m and n such that mu 
and nv are consecutive integers. Then (Pmu(r, s), Pnv(r, s)) = 1 by Lemma 
3(b). But, as noted above, Pu \Pmu and Pv\Pnv. Thus, (Pu (p, s) , Py(p, s)) = 1, 
as required. 

Example 1: To illustrate Theorem 1, we shall determine all primitive integral 
<3, 1> triangles with no side longer than 100. Using Theorem 1, we know that 
they are of the form <S(P 2 - s 2 ) , s 3 , P 3 - 2PS2> for p and s relatively prime 
positive integers with /2/2 < p/2s < 1. Since one side is s3 and we are look-
ing for those with sides no greater than 100, we must have s = 1, 2, 3, or 4. 
For s = 1, we would need /2 < p < 2, which is not possible. For s = 2, we need 
2v2 < p < 4, which is only possible for p = 3 and which gives us the triangle 
<10, 8, 3>. For s = 3, we need 3/2 < p < 6, which is only possible for r = 5 
and which gives us the triangle <48, 27, 35>. For s = 4, we need 4/2 < p < 8, 
which is only possible for p = 6, 7. But 6 is not relatively prime to 4 and 
p = 7 gives us the triangle <132, 64, 119>, two sides of which are too large. 
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