A GENERALIZATION OF A RESULT OF SHANNON AND HORADAM

Dario Castellanos

Universidad de Carabobo, Valencia, Venezuela
(Submitted January 1989)

1. Introduction

In a recent note in this magazine [5] Professors A. G. Shannon and A. F. Horadam generalize a result proposed by Eisenstein [2] and solved by Lord [4] to the effect that
(1.1) $L_{n}-\frac{(-1)^{n}}{L_{n}}-\frac{(-1)^{n}}{L_{n}}-\cdots=\alpha^{n}$,
where L_{n} is the $n^{\text {th }}$ Lucas number and α is the positive root of $x^{2}-x-1=0$.
They introduce the sequence $\left\{w_{n}\right\} \equiv\left\{w_{n}(\alpha, b ; p, q)\right\}$ defined by the initial conditions $w_{0}=a, w_{1}=b$, and the recurrence relation
(1.2) $\quad w_{n}=p w_{n-1}-\tilde{q}^{w_{n-2}}, n \geq 2$,
where p and q are arbitrary integers.
They let $\alpha=\left(p+\sqrt{ }\left(p^{2}-4 q\right)\right) / 2, \beta=\left(p-\sqrt{ }\left(p^{2}-4 q\right)\right) / 2$, for $|\beta|<1$, be the roots of
(1.3) $x^{2}-p x+q=0$,
so that $\left\{w_{n}\right\}$ has the general term

$$
(1.4) \quad w_{n}=A \alpha^{n}+B \beta^{n}
$$

where

$$
\begin{aligned}
& A=(b-\alpha \beta) / d, B=(\alpha \alpha-b) / d, A B=e / d^{2} \\
& e=p a b-q a^{2}-b^{2}, d=\alpha-\beta, p=\alpha+\beta, q=\alpha \beta
\end{aligned}
$$

They also let $Q_{n}=A B q^{n}$.
The Fibonacci sequence is

$$
\left\{F_{n}\right\} \equiv\left\{w_{n}(0,1 ; 1,-1)\right\}, Q_{n}=(-1)^{n+1} / 5
$$

the Lucas sequence is

$$
\left\{L_{n}\right\} \equiv\left\{w_{n}(2,1 ; 1,-1)\right\}, Q_{n}=(-1)^{n} ;
$$

the Pell sequence is

$$
\left\{P_{n}\right\} \equiv\left\{w_{n}(0,1 ; 2,-1)\right\}, Q_{n}=(-1)^{n} / 8
$$

Shannon and Horadam's result is
(1.5) $\quad w_{n}-\frac{Q_{n}}{w_{n}}-\frac{Q_{n}}{w_{n}}-\cdots=A \alpha^{n}$.

They establish this result by finding a general expression for the convergents of the continued fraction (1.5) and determining the limiting form with an appeal to some results of Khovanskii [3].

2. An Alternate Approach

Consider the identity

$$
\begin{equation*}
\sqrt{ } s-t=\left(s-t^{2}\right) /(2 t+(\sqrt{ } s-t)) \tag{2.1}
\end{equation*}
$$

which gives at once the continued fraction (see [1])

$$
\begin{equation*}
\sqrt{ } s=t+\frac{s-t^{2}}{2 t}+\frac{s-t^{2}}{2 t}+\frac{s-t^{2}}{2 t}+\ldots \tag{2.2}
\end{equation*}
$$

In (2.2), replace s and t by $\frac{1}{4} t^{2}-s$ and $\frac{1}{2} t$, respectively, to obtain

$$
\sqrt{ }\left(\frac{1}{4} t^{2}-s\right)-\frac{1}{2} t=\frac{-s}{t}+\frac{-s}{t}+\frac{-s}{t}+\ldots
$$

or equivalently,
(2.3) $\sqrt{ }\left(\frac{1}{4} t^{2}-s\right)+\frac{1}{2} t=t-\frac{s}{t}-\frac{s}{t}-\frac{s}{t}-\ldots$.

With the notation of Section 1 , let $s=Q_{n}=A B(\alpha \beta)^{n}, t=\omega_{n}=A \alpha^{n}+B \beta^{n}$. Simple arithmetic shows that the left-hand side of (2.3) becomes $A \alpha^{n}$, and we find
(2.4) $\quad A \alpha^{n}=\omega_{n}-\frac{Q_{n}}{w_{n}}-\frac{Q_{n}}{w_{n}}-\ldots$,
which is the result of Shannon and Horadam.
Similarly, let $s=(-1)^{n+1}, t=2 F_{n}$, and recall that $F_{n}^{2}+(-1)^{n}=F_{n-1} F_{n+1}$, and (2.3) gives
(2.5) $\sqrt{ }\left(F_{n-1} F_{n+1}\right)-F_{n}=\frac{(-1)^{n}}{2 F_{n}}+\frac{(-1)^{n}}{2 F_{n}}+\ldots$.

As the reader no doubt knows, $\sqrt{ }\left(F_{n-1} F_{n+1}\right)$ is approximated by F_{n}, the approximation becoming better as n increases. The continued fraction in the right-hand side of (2.5) gives the error committed in the approximation.

Classes of expressions can be found by choosing suitable values of s and t. Especially interesting is the choice

$$
t=a_{1} w_{n_{1}}^{k_{1}}+a_{2} w_{n_{2}}^{k_{2}}+\cdots+a_{m} w_{n_{m}}^{k_{m}},
$$

where $k_{1}, k_{2}, \ldots, k_{m}, n_{1}, n_{2}, \ldots, n_{m}$ are arbitrary integers, $a_{1}, \alpha_{2}, \ldots, a_{m}$ are arbitrary real numbers, and s is an arbitrary parameter.

Many other expressions can be found by giving appropriate values to s and t. It is left to the reader to discover them.

Acknowledgment

The author wishes to thank the referee for many helpful comments and stylistic improvements.

References

1. D. Castellanos. 'A Generalization of Binet's Formula and Some of Its Consequences." Fibonacci Quarterly 27.5 (1989):424-38. Equation (2.3) was discovered by the author. Joseph Ehrenfried Hofmann's Geschichte der Mathematik seems to indicate that a formula essentially equivalent to it was originally discovered by Michel Rolle in his Mémoires de mathematiques et de physiques, vol. 3 (Paris, 1692). C. D. Olds makes the claim, in his Continued Fractions, that the formula may have been known to Rafael Bombelli, a native of Bologna and a disciple of Girolamo Cardano, as far back as 1572 .
2. M. Eisenstein. Problems B-530 and B-531. Fibonacci Quarterly 22 (1984):274.
3. A. N. Khovanskii. The Application of Continued Fractions. Tr. from Russian by Peter Wynn. Gronigen: Noordhoff, 1963.
4. G. Lord. Solutions to B-530 and B-531. Fibonacci Quarterly 23 (1985):280-81.
5. A. G. Shannon \& A. F. Horadam. "Generalized Fibonacci Continued Fractions." Fibonacci Quarterly 26 (1988):219-23.
